Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890872370> ?p ?o ?g. }
Showing items 1 to 70 of
70
with 100 items per page.
- W2890872370 abstract "Biomedical entities recognition such as gene, protein, chemicals and diseases is the first and most fundamental biomedical literature mining task. Most of recent biomedical named entity recognition (Bio-NER) methods rely on predefined features which try to capture the specific surface properties of entity types. However, these empirically predefined feature sets differ between entity types and they are complex manually constructed which make their development costly. This paper presents a comparative evaluation of traditional feature representation method and new prototypical representation methods with three machine learning classifiers (Support Vector Machine (SVM), Naive Bayes (NB), and K-Nearest Neighbor (KNN)) for Bio-NER. Several comparative experiments are conducted on widely used standard Bio-NER dataset namely GENIA corpus. This paper demonstrates that prototypical word representation methods can be successfully used for Bio-NER. Experimental results show that the prototypical representation methods improved the performance of the three machine learning models. Finally, the experiments indicate that the SVM classifier with prototypical representation methods yields the best result." @default.
- W2890872370 created "2018-09-27" @default.
- W2890872370 creator A5009793571 @default.
- W2890872370 creator A5032034061 @default.
- W2890872370 creator A5034852151 @default.
- W2890872370 date "2018-03-01" @default.
- W2890872370 modified "2023-09-26" @default.
- W2890872370 title "Investigation of Data Representation Methods with Machine Learning Algorithms for Biomedical Named Enttity Recognition" @default.
- W2890872370 cites W1610821757 @default.
- W2890872370 cites W2049029933 @default.
- W2890872370 cites W2095444228 @default.
- W2890872370 cites W2120754707 @default.
- W2890872370 cites W2133675783 @default.
- W2890872370 cites W2157807817 @default.
- W2890872370 cites W2169491861 @default.
- W2890872370 cites W2171646645 @default.
- W2890872370 cites W2192572088 @default.
- W2890872370 cites W2251235442 @default.
- W2890872370 cites W2339543475 @default.
- W2890872370 cites W2520156704 @default.
- W2890872370 cites W2533611849 @default.
- W2890872370 cites W2600659824 @default.
- W2890872370 cites W2611597380 @default.
- W2890872370 cites W2734608416 @default.
- W2890872370 cites W2804913846 @default.
- W2890872370 doi "https://doi.org/10.1109/infrkm.2018.8464816" @default.
- W2890872370 hasPublicationYear "2018" @default.
- W2890872370 type Work @default.
- W2890872370 sameAs 2890872370 @default.
- W2890872370 citedByCount "1" @default.
- W2890872370 countsByYear W28908723702022 @default.
- W2890872370 crossrefType "proceedings-article" @default.
- W2890872370 hasAuthorship W2890872370A5009793571 @default.
- W2890872370 hasAuthorship W2890872370A5032034061 @default.
- W2890872370 hasAuthorship W2890872370A5034852151 @default.
- W2890872370 hasConcept C11413529 @default.
- W2890872370 hasConcept C119857082 @default.
- W2890872370 hasConcept C153180895 @default.
- W2890872370 hasConcept C154945302 @default.
- W2890872370 hasConcept C17744445 @default.
- W2890872370 hasConcept C199539241 @default.
- W2890872370 hasConcept C2776359362 @default.
- W2890872370 hasConcept C41008148 @default.
- W2890872370 hasConcept C94625758 @default.
- W2890872370 hasConceptScore W2890872370C11413529 @default.
- W2890872370 hasConceptScore W2890872370C119857082 @default.
- W2890872370 hasConceptScore W2890872370C153180895 @default.
- W2890872370 hasConceptScore W2890872370C154945302 @default.
- W2890872370 hasConceptScore W2890872370C17744445 @default.
- W2890872370 hasConceptScore W2890872370C199539241 @default.
- W2890872370 hasConceptScore W2890872370C2776359362 @default.
- W2890872370 hasConceptScore W2890872370C41008148 @default.
- W2890872370 hasConceptScore W2890872370C94625758 @default.
- W2890872370 hasLocation W28908723701 @default.
- W2890872370 hasOpenAccess W2890872370 @default.
- W2890872370 hasPrimaryLocation W28908723701 @default.
- W2890872370 hasRelatedWork W1549289070 @default.
- W2890872370 hasRelatedWork W2961085424 @default.
- W2890872370 hasRelatedWork W3046775127 @default.
- W2890872370 hasRelatedWork W3170094116 @default.
- W2890872370 hasRelatedWork W3209574120 @default.
- W2890872370 hasRelatedWork W4205958290 @default.
- W2890872370 hasRelatedWork W4286629047 @default.
- W2890872370 hasRelatedWork W4306321456 @default.
- W2890872370 hasRelatedWork W4306674287 @default.
- W2890872370 hasRelatedWork W4224009465 @default.
- W2890872370 isParatext "false" @default.
- W2890872370 isRetracted "false" @default.
- W2890872370 magId "2890872370" @default.
- W2890872370 workType "article" @default.