Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890874600> ?p ?o ?g. }
- W2890874600 endingPage "249" @default.
- W2890874600 startingPage "235" @default.
- W2890874600 abstract "Abstract The predictability of droughts in China was investigated using a series of statistical, dynamic and hybrid models. The results indicate that, statistical models exhibit better skill in forecasting the Standardized Precipitation Index in six months (SPI6) than dynamic models. Overall, the ensemble streamflow prediction (ESP) method and wavelet machine learning models outperform other statistical models in forecasting SPI6. The hybrid model can improve the performance of SPI6 forecast by combining statistical and dynamic models using Bayesian model averaging (BMA) method. As for drought onset detection, the ‘low probability of detection (POD) low probability of false alarm (POF)’ and ‘high POD high POF’ phenomena exist in statistical and dynamic models, respectively. On average, less than 20% drought onsets can be detected in statistical models while less than 40% in dynamic models, with more than 40% false alarms appearing in statistical models and more than 75% in dynamic models. The hybrid model can slightly balance them, resulting in a POD of 20% and a POF of 50%. In spite of the low predictability, some stations with high equitable threat score (ETS) can be used in early drought warning under certain requirement. These conclusions may help improving drought prediction at a local or national scale." @default.
- W2890874600 created "2018-09-27" @default.
- W2890874600 creator A5020790434 @default.
- W2890874600 creator A5025501058 @default.
- W2890874600 creator A5084901503 @default.
- W2890874600 creator A5086235539 @default.
- W2890874600 date "2018-11-01" @default.
- W2890874600 modified "2023-10-11" @default.
- W2890874600 title "An evaluation of statistical, NMME and hybrid models for drought prediction in China" @default.
- W2890874600 cites W1498436455 @default.
- W2890874600 cites W1505401644 @default.
- W2890874600 cites W1565526915 @default.
- W2890874600 cites W1592049038 @default.
- W2890874600 cites W1942873126 @default.
- W2890874600 cites W1952172993 @default.
- W2890874600 cites W1964357740 @default.
- W2890874600 cites W1966262860 @default.
- W2890874600 cites W1967784815 @default.
- W2890874600 cites W1970103377 @default.
- W2890874600 cites W1977170961 @default.
- W2890874600 cites W1982074916 @default.
- W2890874600 cites W1985825558 @default.
- W2890874600 cites W1987213677 @default.
- W2890874600 cites W1992069493 @default.
- W2890874600 cites W2000502470 @default.
- W2890874600 cites W2012104308 @default.
- W2890874600 cites W2030811593 @default.
- W2890874600 cites W2031094508 @default.
- W2890874600 cites W2034326114 @default.
- W2890874600 cites W2050590406 @default.
- W2890874600 cites W2051483247 @default.
- W2890874600 cites W2057331441 @default.
- W2890874600 cites W2062100688 @default.
- W2890874600 cites W2064675550 @default.
- W2890874600 cites W2066189288 @default.
- W2890874600 cites W2079605058 @default.
- W2890874600 cites W2081491062 @default.
- W2890874600 cites W2082327374 @default.
- W2890874600 cites W2084279619 @default.
- W2890874600 cites W2086298205 @default.
- W2890874600 cites W2092688177 @default.
- W2890874600 cites W2099501065 @default.
- W2890874600 cites W2102441298 @default.
- W2890874600 cites W2107132049 @default.
- W2890874600 cites W2111122701 @default.
- W2890874600 cites W2116196493 @default.
- W2890874600 cites W2116512828 @default.
- W2890874600 cites W2139211795 @default.
- W2890874600 cites W2139940184 @default.
- W2890874600 cites W2141216009 @default.
- W2890874600 cites W2141412323 @default.
- W2890874600 cites W2141984324 @default.
- W2890874600 cites W2143357393 @default.
- W2890874600 cites W2153218922 @default.
- W2890874600 cites W2158952405 @default.
- W2890874600 cites W2165895388 @default.
- W2890874600 cites W2166535858 @default.
- W2890874600 cites W2173297665 @default.
- W2890874600 cites W2176683074 @default.
- W2890874600 cites W2181125631 @default.
- W2890874600 cites W2192273572 @default.
- W2890874600 cites W2268461985 @default.
- W2890874600 cites W2319453305 @default.
- W2890874600 cites W2350279231 @default.
- W2890874600 cites W2414717079 @default.
- W2890874600 cites W2546091129 @default.
- W2890874600 cites W2560800897 @default.
- W2890874600 cites W2569140349 @default.
- W2890874600 cites W2586586084 @default.
- W2890874600 cites W2737458524 @default.
- W2890874600 cites W2741401957 @default.
- W2890874600 cites W2742131558 @default.
- W2890874600 cites W2744649443 @default.
- W2890874600 cites W2760894977 @default.
- W2890874600 cites W2774547596 @default.
- W2890874600 cites W2779580338 @default.
- W2890874600 cites W2781981764 @default.
- W2890874600 cites W2784198242 @default.
- W2890874600 cites W2797092231 @default.
- W2890874600 cites W3125807057 @default.
- W2890874600 cites W4242671632 @default.
- W2890874600 cites W4255272544 @default.
- W2890874600 cites W58609180 @default.
- W2890874600 doi "https://doi.org/10.1016/j.jhydrol.2018.09.020" @default.
- W2890874600 hasPublicationYear "2018" @default.
- W2890874600 type Work @default.
- W2890874600 sameAs 2890874600 @default.
- W2890874600 citedByCount "58" @default.
- W2890874600 countsByYear W28908746002019 @default.
- W2890874600 countsByYear W28908746002020 @default.
- W2890874600 countsByYear W28908746002021 @default.
- W2890874600 countsByYear W28908746002022 @default.
- W2890874600 countsByYear W28908746002023 @default.
- W2890874600 crossrefType "journal-article" @default.
- W2890874600 hasAuthorship W2890874600A5020790434 @default.
- W2890874600 hasAuthorship W2890874600A5025501058 @default.
- W2890874600 hasAuthorship W2890874600A5084901503 @default.
- W2890874600 hasAuthorship W2890874600A5086235539 @default.