Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890878932> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W2890878932 abstract "Geothermal energy is a relatively sustainable energy source of which the essence is to extract heat from hot subsurface rocks. Circulating fluids serve as the transport agent of heat. The contact area between the fluids and the rocks is where the relevant heat transfer occurs, i.e., where the water is heated up. In some geothermal reservoirs, this circulation occurs naturally through porous matrix (mainly sediments) or through heavily fractured formations. Enhanced geothermal systems (EGS) are potentially favorable reservoirs where subsurface permeability is increased by means of artificial stimulation techniques. These stimulation techniques often involve hydraulic fracturing where a limited existing fracture network is expanded or “enhanced” by injecting fluids under high pressure conditions. While the geometry of the generated fractures influences permeability, the effect on heat exchange has received less attention. This thesis discusses the effects of fracture geometry on the heat transfer between solid and fluid. Along with laboratory experiments, numerical simulations were conducted. All investigations were performed on igneous granite rocks. Tensile fractures were generated to allow a fluid flow along the otherwise impermeable rock samples. Several parameters were varied throughout the experiments and simulations including volumetric flow rate, fracture aperture, rock temperature and fracture geometry and surface area in order to investigate their impact on heat transfer processes. Flow rate variations in the experiments have shown that higher flow rates cause the fluid to absorb less heat per unit volume and cause the rock to cool down more extensively, therefore thermal depletion of the reservoir is likely to occur within a shorter time frame. The dependency of exchanged heat on fracture aperture variations (in the range of 0.05 to 0.5 mm) did not yield a clear trend within the experiments, but does so in numerical simulations. Aperture variations in the numerical simulations did not cause notable differences in transferred heat as long as the volumetric flow rate is kept constant. However, as the fluid velocity is kept constant the amount of fluid flushed along the fracture per unit time is affected by varying apertures. This causes a difference in heat transfer as well. Increased fracture surface areas alone (more extensive topology/roughness) have shown a minimal impact on the heat production while a more extensive fracture network (additional branches) has shown notable enhancement in the amount of heat produced. Cooling behavior of the rock has shown correlations with Newton’s law of cooling and suggests a limitation of heat production by the heat conduction occurring within the rock. Experimental findings cannot directly be compared with natural reservoir conditions. The reason for this is a thermal equilibrium that is achieved at each flow experiment, i.e., the heat withdrawn equals the heat resupplied by a heater. In natural reservoirs this is often not the case where a cold front propagates towards the production well and determines the lifetime of how long heat can efficiently be produced from a certain rock mass. This results in an unsteady heat conduction where the heat withdrawn does not equal the heat resupplied." @default.
- W2890878932 created "2018-09-27" @default.
- W2890878932 creator A5077666752 @default.
- W2890878932 date "2018-01-01" @default.
- W2890878932 modified "2023-09-26" @default.
- W2890878932 title "Heat Exchange in Tensile Fractures: an Experimental and Numerical Approach" @default.
- W2890878932 hasPublicationYear "2018" @default.
- W2890878932 type Work @default.
- W2890878932 sameAs 2890878932 @default.
- W2890878932 citedByCount "0" @default.
- W2890878932 crossrefType "journal-article" @default.
- W2890878932 hasAuthorship W2890878932A5077666752 @default.
- W2890878932 hasConcept C107706546 @default.
- W2890878932 hasConcept C111766609 @default.
- W2890878932 hasConcept C120882062 @default.
- W2890878932 hasConcept C121332964 @default.
- W2890878932 hasConcept C127313418 @default.
- W2890878932 hasConcept C172120300 @default.
- W2890878932 hasConcept C185592680 @default.
- W2890878932 hasConcept C187320778 @default.
- W2890878932 hasConcept C2779096232 @default.
- W2890878932 hasConcept C41625074 @default.
- W2890878932 hasConcept C43369102 @default.
- W2890878932 hasConcept C50517652 @default.
- W2890878932 hasConcept C518406490 @default.
- W2890878932 hasConcept C55493867 @default.
- W2890878932 hasConcept C57879066 @default.
- W2890878932 hasConcept C5900021 @default.
- W2890878932 hasConcept C6648577 @default.
- W2890878932 hasConcept C78762247 @default.
- W2890878932 hasConcept C8058405 @default.
- W2890878932 hasConcept C90278072 @default.
- W2890878932 hasConcept C97355855 @default.
- W2890878932 hasConceptScore W2890878932C107706546 @default.
- W2890878932 hasConceptScore W2890878932C111766609 @default.
- W2890878932 hasConceptScore W2890878932C120882062 @default.
- W2890878932 hasConceptScore W2890878932C121332964 @default.
- W2890878932 hasConceptScore W2890878932C127313418 @default.
- W2890878932 hasConceptScore W2890878932C172120300 @default.
- W2890878932 hasConceptScore W2890878932C185592680 @default.
- W2890878932 hasConceptScore W2890878932C187320778 @default.
- W2890878932 hasConceptScore W2890878932C2779096232 @default.
- W2890878932 hasConceptScore W2890878932C41625074 @default.
- W2890878932 hasConceptScore W2890878932C43369102 @default.
- W2890878932 hasConceptScore W2890878932C50517652 @default.
- W2890878932 hasConceptScore W2890878932C518406490 @default.
- W2890878932 hasConceptScore W2890878932C55493867 @default.
- W2890878932 hasConceptScore W2890878932C57879066 @default.
- W2890878932 hasConceptScore W2890878932C5900021 @default.
- W2890878932 hasConceptScore W2890878932C6648577 @default.
- W2890878932 hasConceptScore W2890878932C78762247 @default.
- W2890878932 hasConceptScore W2890878932C8058405 @default.
- W2890878932 hasConceptScore W2890878932C90278072 @default.
- W2890878932 hasConceptScore W2890878932C97355855 @default.
- W2890878932 hasLocation W28908789321 @default.
- W2890878932 hasOpenAccess W2890878932 @default.
- W2890878932 hasPrimaryLocation W28908789321 @default.
- W2890878932 hasRelatedWork W1881388767 @default.
- W2890878932 hasRelatedWork W1983871923 @default.
- W2890878932 hasRelatedWork W1992285842 @default.
- W2890878932 hasRelatedWork W2004458889 @default.
- W2890878932 hasRelatedWork W2043777337 @default.
- W2890878932 hasRelatedWork W2058092103 @default.
- W2890878932 hasRelatedWork W2092102422 @default.
- W2890878932 hasRelatedWork W2139139371 @default.
- W2890878932 hasRelatedWork W2326437487 @default.
- W2890878932 hasRelatedWork W2345028720 @default.
- W2890878932 hasRelatedWork W241310101 @default.
- W2890878932 hasRelatedWork W2420690608 @default.
- W2890878932 hasRelatedWork W2737071001 @default.
- W2890878932 hasRelatedWork W2796658613 @default.
- W2890878932 hasRelatedWork W2912445827 @default.
- W2890878932 hasRelatedWork W2972052920 @default.
- W2890878932 hasRelatedWork W3000282799 @default.
- W2890878932 hasRelatedWork W3004624970 @default.
- W2890878932 hasRelatedWork W805573677 @default.
- W2890878932 hasRelatedWork W1805408923 @default.
- W2890878932 isParatext "false" @default.
- W2890878932 isRetracted "false" @default.
- W2890878932 magId "2890878932" @default.
- W2890878932 workType "article" @default.