Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890883963> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W2890883963 abstract "PreviousNext No AccessSEG Technical Program Expanded Abstracts 2018Seismic data interpolation through convolutional autoencoderAuthors: Sara MandelliFederico BorraVincenzo LipariPaolo BestaginiAugusto SartiStefano TubaroSara MandelliPolitecnico di Milano, ItalySearch for more papers by this author, Federico BorraPolitecnico di Milano, ItalySearch for more papers by this author, Vincenzo LipariPolitecnico di Milano, ItalySearch for more papers by this author, Paolo BestaginiPolitecnico di Milano, ItalySearch for more papers by this author, Augusto SartiPolitecnico di Milano, ItalySearch for more papers by this author, and Stefano TubaroPolitecnico di Milano, ItalySearch for more papers by this authorhttps://doi.org/10.1190/segam2018-2995428.1 SectionsAboutPDF/ePub ToolsAdd to favoritesDownload CitationsTrack CitationsPermissions ShareFacebookTwitterLinked InRedditEmail Abstract A common issue of seismic data analysis consists in the lack of regular and densely sampled seismic traces. This problem is commonly tackled by rank optimization or statistical features learning algorithms, which allow interpolation and denoising of corrupted data. In this paper, we propose a completely novel approach for reconstructing missing traces of pre-stack seismic data, taking inspiration from computer vision and image processing latest developments. More specifically, we exploit a specific kind of convolutional neural networks known as convolutional autoencoder. We illustrate the advantages of using deep learning strategies with respect to state-of-the-art by comparing the achieved results over a well-known seismic dataset. Presentation Date: Wednesday, October 17, 2018 Start Time: 1:50:00 PM Location: 204C (Anaheim Convention Center) Presentation Type: Oral Keywords: interpolation, machine learning, neural networks, processing, data reconstructionPermalink: https://doi.org/10.1190/segam2018-2995428.1FiguresReferencesRelatedDetailsCited byFault2SeisGAN: A method for the expansion of fault datasets based on generative adversarial networks20 January 2023 | Frontiers in Earth Science, Vol. 11Depthwise separable convolution Unet for 3D seismic data interpolation11 January 2023 | Frontiers in Earth Science, Vol. 10Simultaneous reconstruction and denoising for DAS-VSP seismic data by RRU-net9 January 2023 | Frontiers in Earth Science, Vol. 10Regeneration-Constrained Self-Supervised Seismic Data InterpolationIEEE Transactions on Geoscience and Remote Sensing, Vol. 61Inverse-Scattering Theory Guided U-Net Neural Networks for Internal Multiple EliminationIEEE Transactions on Geoscience and Remote Sensing, Vol. 61DIPPAS: a deep image prior PRNU anonymization scheme14 February 2022 | EURASIP Journal on Information Security, Vol. 2022, No. 1Simple framework for the contrastive learning of visual representations-based data-driven tight frame for seismic denoising and interpolationJinghe Li and Xiangling Wu1 August 2022 | GEOPHYSICS, Vol. 87, No. 5Improved Unet in Lithology Identification of Coal Measure Strata24 August 2022 | Lithosphere, Vol. 2022, No. Special 12Internal multiple elimination with an inverse-scattering theory guided deep neural networkZhiwei Gu, Liurong Tao, Haoran Ren, Ru-Shan Wu, and Jianhua Geng15 August 2022Equivariant imaging for self-supervised regularly undersampled seismic data interpolationWeiwei Xu, Vincenzo Lipari, Paolo Bestagini, Politecnico di Milano, Wenchao Chen, and Stefano Tubaro15 August 2022Deep learning decomposition for null and active space estimation for thin-bed reflectivity inversionKristian Torres and Mauricio D. Sacchi15 August 2022Deep learning-based shot-domain seismic deblendingJing Sun, Song Hou, Vetle Vinje, Gordon Poole, and Leiv-J Gelius18 April 2022 | GEOPHYSICS, Vol. 87, No. 3Stochastic electrical resistivity tomography with ensemble smoother and deep convolutional autoencoders13 January 2022 | Near Surface Geophysics, Vol. 20, No. 2Reconstruction of Sparsely Sampled Seismic Data via Residual U-NetIEEE Geoscience and Remote Sensing Letters, Vol. 19Deep Prior-Based Unsupervised Reconstruction of Irregularly Sampled Seismic DataIEEE Geoscience and Remote Sensing Letters, Vol. 19A Convolutional Autoencoder Method for Simultaneous Seismic Data Reconstruction and DenoisingIEEE Geoscience and Remote Sensing Letters, Vol. 19Seismic Data Consecutively Missing Trace Interpolation Based on Multistage Neural Network Training ProcessIEEE Geoscience and Remote Sensing Letters, Vol. 19Seismic Data Reconstruction via Recurrent Residual Multiscale InferenceIEEE Geoscience and Remote Sensing Letters, Vol. 19Attention and Hybrid Loss Guided Deep Learning for Consecutively Missing Seismic Data ReconstructionIEEE Transactions on Geoscience and Remote Sensing, Vol. 60DTAE: Deep Tensor Autoencoder for 3-D Seismic Data InterpolationIEEE Transactions on Geoscience and Remote Sensing, Vol. 60Seismic Data Interpolation Based on Simultaneously Sparse and Low-Rank Matrix RecoveryIEEE Transactions on Geoscience and Remote Sensing, Vol. 60Low-Frequency Extrapolation of Prestack Viscoacoustic Seismic Data Based on Dense Convolutional NetworkIEEE Transactions on Geoscience and Remote Sensing, Vol. 60Hybrid Loss-Guided Coarse-to-Fine Model for Seismic Data Consecutively Missing Trace ReconstructionIEEE Transactions on Geoscience and Remote Sensing, Vol. 60Restoration of Seismic Data Using Inpainting and EdgeConnect12 October 2021Seismic Data Interpolation Using Dual-Domain Conditional Generative Adversarial NetworksIEEE Geoscience and Remote Sensing Letters, Vol. 18, No. 10Anti-Aliasing Add-On For Deep Prior Seismic Data InterpolationUsing Noise Pollution Data for Traffic Prediction in Smart Cities: Experiments Based on LSTM Recurrent Neural NetworksIEEE Sensors Journal, Vol. 21, No. 18Seismic nonstationary deconvolution with physics-guided autoencoderSon Phan and Mrinal K. Sen1 September 2021A Fast Algorithm for Elastic Wave‐Mode Separation Using Deep Learning With Generative Adversarial Networks (GANs)3 September 2021 | Journal of Geophysical Research: Solid Earth, Vol. 126, No. 9Seismic Data Reconstruction Using Deep Bidirectional Long Short-Term Memory With Skip ConnectionsIEEE Geoscience and Remote Sensing Letters, Vol. 18, No. 7Research on fault recognition method combining 3D Res-UNet and knowledge distillation8 November 2021 | Applied Geophysics, Vol. 18, No. 2Training deep networks with only synthetic data: Deep-learning-based near-offset reconstruction for (closed-loop) surface-related multiple estimation on shallow-water field dataShan Qu, Eric Verschuur, Dong Zhang, and Yangkang Chen27 April 2021 | GEOPHYSICS, Vol. 86, No. 3Deep-seismic-prior-based reconstruction of seismic data using convolutional neural networksQun Liu, Lihua Fu, and Meng Zhang18 February 2021 | GEOPHYSICS, Vol. 86, No. 2Seismic data interpolation based on U-net with texture lossWenqian Fang, Lihua Fu, Meng Zhang, and Zhiming Li20 January 2021 | GEOPHYSICS, Vol. 86, No. 1Interpolated multichannel singular spectrum analysis: A reconstruction method that honors true trace coordinatesFernanda Carozzi and Mauricio D. Sacchi22 January 2021 | GEOPHYSICS, Vol. 86, No. 1Landmine Detection Using Autoencoders on Multipolarization GPR Volumetric DataIEEE Transactions on Geoscience and Remote Sensing, Vol. 59, No. 1ML-descent: An optimization algorithm for full-waveform inversion using machine learningBingbing Sun and Tariq Alkhalifah21 October 2020 | GEOPHYSICS, Vol. 85, No. 6Inpainting of local wavefront attributes using artificial intelligence for enhancement of massive 3-D pre-stack seismic data8 September 2020 | Geophysical Journal International, Vol. 223, No. 3Deep prior-based seismic data interpolation via multi-res U-netFantong Kong, Francesco Picetti, Vincenzo Lipari, Paolo Bestagini, and Stefano Tubaro30 September 2020Crossline interpolation with the traces-to-trace approach using machine learningZeu Yeeh, Joongmoo Byun, and Daeung Yoon30 September 2020Low-frequency swell noise suppression based on U-Net5 January 2021 | Applied Geophysics, Vol. 17, No. 32-D Seismic Data Reconstruction via Truncated Nuclear Norm RegularizationIEEE Transactions on Geoscience and Remote Sensing, Vol. 58, No. 9A convolutional neural network approach to deblending seismic dataJing Sun, Sigmund Slang, Thomas Elboth, Thomas Larsen Greiner, Steven McDonald, and Leiv-J. Gelius16 January 2020 | GEOPHYSICS, Vol. 85, No. 4Deep convolutional neural network and sparse least-squares migrationZhaolun Liu, Yuqing Chen, and Gerard Schuster13 June 2020 | GEOPHYSICS, Vol. 85, No. 4Attenuation of marine seismic interference noise employing a customized U‐Net19 January 2020 | Geophysical Prospecting, Vol. 68, No. 3Source Localization Using Distributed Microphones in Reverberant Environments Based on Deep Learning and Ray Space TransformIEEE/ACM Transactions on Audio, Speech, and Language Processing, Vol. 28The importance of transfer learning in seismic modeling and imagingAli Siahkoohi, Mathias Louboutin, and Felix J. Herrmann9 October 2019 | GEOPHYSICS, Vol. 84, No. 6Reconstruction of seismic field data with convolutional U-Net considering the optimal training input dataJiho Park, Daeung Yoon, Soon Jee Seol, and Joongmoo Byun1 August 2019Wavefield compression for seismic imaging via convolutional neural networksFrancesco Devoti, Claudia Parera, Alessandro Lieto, Daniele Moro, Vincenzo Lipari, Paolo Bestagini, and Stefano Tubaro10 August 2019Deep-learning based ocean bottom seismic wavefield recoveryAli Siahkoohi, Rajiv Kumar, and Felix J. Herrmann10 August 2019Seismic image processing through the generative adversarial networkFrancesco Picetti, Vincenzo Lipari, Paolo Bestagini, and Stefano Tubaro28 May 2019 | Interpretation, Vol. 7, No. 3 SEG Technical Program Expanded Abstracts 2018ISSN (print):1052-3812 ISSN (online):1949-4645Copyright: 2018 Pages: 5520 publication data© 2018 Published in electronic format with permission by the Society of Exploration GeophysicistsPublisher:Society of Exploration Geophysicists HistoryPublished Online: 27 Aug 2018 CITATION INFORMATION Sara Mandelli, Federico Borra, Vincenzo Lipari, Paolo Bestagini, Augusto Sarti, and Stefano Tubaro, (2018), Seismic data interpolation through convolutional autoencoder, SEG Technical Program Expanded Abstracts : 4101-4105. https://doi.org/10.1190/segam2018-2995428.1 Plain-Language Summary Keywordsinterpolationmachine learningneural networksprocessingdata reconstructionPDF DownloadLoading ..." @default.
- W2890883963 created "2018-09-27" @default.
- W2890883963 creator A5005378965 @default.
- W2890883963 creator A5020147168 @default.
- W2890883963 creator A5035464509 @default.
- W2890883963 creator A5043644234 @default.
- W2890883963 creator A5051370303 @default.
- W2890883963 creator A5051897828 @default.
- W2890883963 date "2018-08-27" @default.
- W2890883963 modified "2023-10-05" @default.
- W2890883963 title "Seismic data interpolation through convolutional autoencoder" @default.
- W2890883963 cites W1498924937 @default.
- W2890883963 cites W1901129140 @default.
- W2890883963 cites W1981607562 @default.
- W2890883963 cites W1996098514 @default.
- W2890883963 cites W2007737539 @default.
- W2890883963 cites W2069625698 @default.
- W2890883963 cites W2081576211 @default.
- W2890883963 cites W2088945340 @default.
- W2890883963 cites W2090296963 @default.
- W2890883963 cites W2090319605 @default.
- W2890883963 cites W2092870668 @default.
- W2890883963 cites W2124769970 @default.
- W2890883963 cites W2141953966 @default.
- W2890883963 cites W2170860899 @default.
- W2890883963 cites W2318535147 @default.
- W2890883963 cites W2331847114 @default.
- W2890883963 cites W2335559430 @default.
- W2890883963 cites W2463531433 @default.
- W2890883963 cites W2484306952 @default.
- W2890883963 cites W2963420272 @default.
- W2890883963 doi "https://doi.org/10.1190/segam2018-2995428.1" @default.
- W2890883963 hasPublicationYear "2018" @default.
- W2890883963 type Work @default.
- W2890883963 sameAs 2890883963 @default.
- W2890883963 citedByCount "63" @default.
- W2890883963 countsByYear W28908839632019 @default.
- W2890883963 countsByYear W28908839632020 @default.
- W2890883963 countsByYear W28908839632021 @default.
- W2890883963 countsByYear W28908839632022 @default.
- W2890883963 countsByYear W28908839632023 @default.
- W2890883963 crossrefType "proceedings-article" @default.
- W2890883963 hasAuthorship W2890883963A5005378965 @default.
- W2890883963 hasAuthorship W2890883963A5020147168 @default.
- W2890883963 hasAuthorship W2890883963A5035464509 @default.
- W2890883963 hasAuthorship W2890883963A5043644234 @default.
- W2890883963 hasAuthorship W2890883963A5051370303 @default.
- W2890883963 hasAuthorship W2890883963A5051897828 @default.
- W2890883963 hasConcept C101738243 @default.
- W2890883963 hasConcept C108583219 @default.
- W2890883963 hasConcept C115961682 @default.
- W2890883963 hasConcept C127313418 @default.
- W2890883963 hasConcept C137800194 @default.
- W2890883963 hasConcept C153180895 @default.
- W2890883963 hasConcept C154945302 @default.
- W2890883963 hasConcept C41008148 @default.
- W2890883963 hasConcept C81363708 @default.
- W2890883963 hasConceptScore W2890883963C101738243 @default.
- W2890883963 hasConceptScore W2890883963C108583219 @default.
- W2890883963 hasConceptScore W2890883963C115961682 @default.
- W2890883963 hasConceptScore W2890883963C127313418 @default.
- W2890883963 hasConceptScore W2890883963C137800194 @default.
- W2890883963 hasConceptScore W2890883963C153180895 @default.
- W2890883963 hasConceptScore W2890883963C154945302 @default.
- W2890883963 hasConceptScore W2890883963C41008148 @default.
- W2890883963 hasConceptScore W2890883963C81363708 @default.
- W2890883963 hasLocation W28908839631 @default.
- W2890883963 hasOpenAccess W2890883963 @default.
- W2890883963 hasPrimaryLocation W28908839631 @default.
- W2890883963 hasRelatedWork W2292254049 @default.
- W2890883963 hasRelatedWork W2592385986 @default.
- W2890883963 hasRelatedWork W2772780115 @default.
- W2890883963 hasRelatedWork W2897995864 @default.
- W2890883963 hasRelatedWork W2998168123 @default.
- W2890883963 hasRelatedWork W3099179464 @default.
- W2890883963 hasRelatedWork W4281924768 @default.
- W2890883963 hasRelatedWork W4287083450 @default.
- W2890883963 hasRelatedWork W4287995534 @default.
- W2890883963 hasRelatedWork W4309838615 @default.
- W2890883963 isParatext "false" @default.
- W2890883963 isRetracted "false" @default.
- W2890883963 magId "2890883963" @default.
- W2890883963 workType "article" @default.