Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890894612> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W2890894612 abstract "In this work, we present a comparison of a shallow and a deep learning architecture for the automated segmentation of white matter lesions in MR images of multiple sclerosis patients. In particular, we train and test both methods on early stage disease patients, to verify their performance in challenging conditions, more similar to a clinical setting than what is typically provided in multiple sclerosis segmentation challenges. Furthermore, we evaluate a prototype naive combination of the two methods, which refines the final segmentation. All methods were trained on 32 patients, and the evaluation was performed on a pure test set of 73 cases. Results show low lesion-wise false positives (30%) for the deep learning architecture, whereas the shallow architecture yields the best Dice coefficient (63%) and volume difference (19%). Combining both shallow and deep architectures further improves the lesion-wise metrics (69% and 26% lesion-wise true and false positive rate, respectively)." @default.
- W2890894612 created "2018-09-27" @default.
- W2890894612 creator A5004258520 @default.
- W2890894612 creator A5011811370 @default.
- W2890894612 creator A5037272620 @default.
- W2890894612 creator A5050483131 @default.
- W2890894612 creator A5067782007 @default.
- W2890894612 creator A5079054543 @default.
- W2890894612 creator A5087412483 @default.
- W2890894612 date "2018-09-10" @default.
- W2890894612 modified "2023-10-16" @default.
- W2890894612 title "Shallow vs deep learning architectures for white matter lesion segmentation in the early stages of multiple sclerosis" @default.
- W2890894612 cites W2028094999 @default.
- W2890894612 cites W2071881327 @default.
- W2890894612 cites W2133287637 @default.
- W2890894612 cites W2175642482 @default.
- W2890894612 cites W2342591535 @default.
- W2890894612 cites W2575552683 @default.
- W2890894612 cites W2589409328 @default.
- W2890894612 cites W2617063304 @default.
- W2890894612 cites W2952464756 @default.
- W2890894612 cites W6908809 @default.
- W2890894612 cites W2794703302 @default.
- W2890894612 hasPublicationYear "2018" @default.
- W2890894612 type Work @default.
- W2890894612 sameAs 2890894612 @default.
- W2890894612 citedByCount "0" @default.
- W2890894612 crossrefType "posted-content" @default.
- W2890894612 hasAuthorship W2890894612A5004258520 @default.
- W2890894612 hasAuthorship W2890894612A5011811370 @default.
- W2890894612 hasAuthorship W2890894612A5037272620 @default.
- W2890894612 hasAuthorship W2890894612A5050483131 @default.
- W2890894612 hasAuthorship W2890894612A5067782007 @default.
- W2890894612 hasAuthorship W2890894612A5079054543 @default.
- W2890894612 hasAuthorship W2890894612A5087412483 @default.
- W2890894612 hasConcept C108583219 @default.
- W2890894612 hasConcept C118552586 @default.
- W2890894612 hasConcept C124504099 @default.
- W2890894612 hasConcept C126838900 @default.
- W2890894612 hasConcept C142724271 @default.
- W2890894612 hasConcept C143409427 @default.
- W2890894612 hasConcept C153180895 @default.
- W2890894612 hasConcept C154945302 @default.
- W2890894612 hasConcept C163892561 @default.
- W2890894612 hasConcept C2780640218 @default.
- W2890894612 hasConcept C2781156865 @default.
- W2890894612 hasConcept C2781192897 @default.
- W2890894612 hasConcept C41008148 @default.
- W2890894612 hasConcept C64869954 @default.
- W2890894612 hasConcept C71924100 @default.
- W2890894612 hasConcept C89600930 @default.
- W2890894612 hasConceptScore W2890894612C108583219 @default.
- W2890894612 hasConceptScore W2890894612C118552586 @default.
- W2890894612 hasConceptScore W2890894612C124504099 @default.
- W2890894612 hasConceptScore W2890894612C126838900 @default.
- W2890894612 hasConceptScore W2890894612C142724271 @default.
- W2890894612 hasConceptScore W2890894612C143409427 @default.
- W2890894612 hasConceptScore W2890894612C153180895 @default.
- W2890894612 hasConceptScore W2890894612C154945302 @default.
- W2890894612 hasConceptScore W2890894612C163892561 @default.
- W2890894612 hasConceptScore W2890894612C2780640218 @default.
- W2890894612 hasConceptScore W2890894612C2781156865 @default.
- W2890894612 hasConceptScore W2890894612C2781192897 @default.
- W2890894612 hasConceptScore W2890894612C41008148 @default.
- W2890894612 hasConceptScore W2890894612C64869954 @default.
- W2890894612 hasConceptScore W2890894612C71924100 @default.
- W2890894612 hasConceptScore W2890894612C89600930 @default.
- W2890894612 hasOpenAccess W2890894612 @default.
- W2890894612 hasRelatedWork W2745892997 @default.
- W2890894612 hasRelatedWork W2891863239 @default.
- W2890894612 hasRelatedWork W2903617078 @default.
- W2890894612 hasRelatedWork W2913768941 @default.
- W2890894612 hasRelatedWork W2950850104 @default.
- W2890894612 hasRelatedWork W2951699872 @default.
- W2890894612 hasRelatedWork W2964221913 @default.
- W2890894612 hasRelatedWork W2972717963 @default.
- W2890894612 hasRelatedWork W2972900310 @default.
- W2890894612 hasRelatedWork W2979549710 @default.
- W2890894612 hasRelatedWork W2979783984 @default.
- W2890894612 hasRelatedWork W2999370362 @default.
- W2890894612 hasRelatedWork W3000216628 @default.
- W2890894612 hasRelatedWork W3006144963 @default.
- W2890894612 hasRelatedWork W3007351280 @default.
- W2890894612 hasRelatedWork W3017308947 @default.
- W2890894612 hasRelatedWork W3028493814 @default.
- W2890894612 hasRelatedWork W3045048055 @default.
- W2890894612 hasRelatedWork W3136212843 @default.
- W2890894612 hasRelatedWork W3200340288 @default.
- W2890894612 isParatext "false" @default.
- W2890894612 isRetracted "false" @default.
- W2890894612 magId "2890894612" @default.
- W2890894612 workType "article" @default.