Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890894871> ?p ?o ?g. }
- W2890894871 endingPage "393" @default.
- W2890894871 startingPage "381" @default.
- W2890894871 abstract "The atmospheric scattering and absorption gives rise to the natural phenomenon of haze, which severely affects the visibility of scenery. Thus, the image taken by the camera can easily lead to over brightness and ambiguity. To resolve an illposed and intractable problem of single image dehazing, we propose a straightforward but remarkable prior-atmospheric illumination prior in this paper. The extensive statistical experiments for different colorspaces and theoretical analyses indicate that the atmospheric illumination in hazy weather mainly has a great influence on the luminance channel in YCrCb colorspace, and has less impact on the chrominance channels. According to this prior, we try to maintain the intrinsic color of hazy scene and enhance its visual contrast. To this end, we apply the multiscale convolutional networks that can automatically identify hazy regions and restore deficient texture information. Compared with previous methods, the deep CNNs not only achieve an end-to-end trainable model, but also accomplish an easy imageto-image system architecture. The extensive comparisons and analyses with existing approaches demonstrate that the proposed approach achieves the state-of-the-art performance on several dehazing effects." @default.
- W2890894871 created "2018-09-27" @default.
- W2890894871 creator A5010729372 @default.
- W2890894871 creator A5032533121 @default.
- W2890894871 creator A5043482575 @default.
- W2890894871 creator A5086088292 @default.
- W2890894871 date "2019-01-01" @default.
- W2890894871 modified "2023-10-12" @default.
- W2890894871 title "AIPNet: Image-to-Image Single Image Dehazing With Atmospheric Illumination Prior" @default.
- W2890894871 cites W1677182931 @default.
- W2890894871 cites W1885185971 @default.
- W2890894871 cites W1960752652 @default.
- W2890894871 cites W1971693194 @default.
- W2890894871 cites W1978125380 @default.
- W2890894871 cites W1979319585 @default.
- W2890894871 cites W1979666307 @default.
- W2890894871 cites W1998363013 @default.
- W2890894871 cites W2002299629 @default.
- W2890894871 cites W2003709967 @default.
- W2890894871 cites W2028990532 @default.
- W2890894871 cites W2035773017 @default.
- W2890894871 cites W2044673646 @default.
- W2890894871 cites W2065002911 @default.
- W2890894871 cites W2081418206 @default.
- W2890894871 cites W2097900287 @default.
- W2890894871 cites W2106402996 @default.
- W2890894871 cites W2109616376 @default.
- W2890894871 cites W2110644821 @default.
- W2890894871 cites W2114867966 @default.
- W2890894871 cites W2117539524 @default.
- W2890894871 cites W2121880036 @default.
- W2890894871 cites W2125188192 @default.
- W2890894871 cites W2128254161 @default.
- W2890894871 cites W2133255058 @default.
- W2890894871 cites W2147318913 @default.
- W2890894871 cites W2155893237 @default.
- W2890894871 cites W2156936307 @default.
- W2890894871 cites W2165725739 @default.
- W2890894871 cites W2183341477 @default.
- W2890894871 cites W2194775991 @default.
- W2890894871 cites W2256362396 @default.
- W2890894871 cites W2395611524 @default.
- W2890894871 cites W2411880591 @default.
- W2890894871 cites W2412782625 @default.
- W2890894871 cites W2464754550 @default.
- W2890894871 cites W2467473805 @default.
- W2890894871 cites W2508509730 @default.
- W2890894871 cites W2536722097 @default.
- W2890894871 cites W2559264300 @default.
- W2890894871 cites W2587136665 @default.
- W2890894871 cites W2596670562 @default.
- W2890894871 cites W2605495192 @default.
- W2890894871 cites W2740982616 @default.
- W2890894871 cites W2912104034 @default.
- W2890894871 cites W4232215610 @default.
- W2890894871 cites W639708223 @default.
- W2890894871 cites W645436802 @default.
- W2890894871 doi "https://doi.org/10.1109/tip.2018.2868567" @default.
- W2890894871 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30188821" @default.
- W2890894871 hasPublicationYear "2019" @default.
- W2890894871 type Work @default.
- W2890894871 sameAs 2890894871 @default.
- W2890894871 citedByCount "94" @default.
- W2890894871 countsByYear W28908948712019 @default.
- W2890894871 countsByYear W28908948712020 @default.
- W2890894871 countsByYear W28908948712021 @default.
- W2890894871 countsByYear W28908948712022 @default.
- W2890894871 countsByYear W28908948712023 @default.
- W2890894871 crossrefType "journal-article" @default.
- W2890894871 hasAuthorship W2890894871A5010729372 @default.
- W2890894871 hasAuthorship W2890894871A5032533121 @default.
- W2890894871 hasAuthorship W2890894871A5043482575 @default.
- W2890894871 hasAuthorship W2890894871A5086088292 @default.
- W2890894871 hasConcept C106430172 @default.
- W2890894871 hasConcept C115961682 @default.
- W2890894871 hasConcept C118365302 @default.
- W2890894871 hasConcept C120665830 @default.
- W2890894871 hasConcept C121332964 @default.
- W2890894871 hasConcept C123403432 @default.
- W2890894871 hasConcept C125245961 @default.
- W2890894871 hasConcept C127162648 @default.
- W2890894871 hasConcept C153294291 @default.
- W2890894871 hasConcept C154945302 @default.
- W2890894871 hasConcept C163204269 @default.
- W2890894871 hasConcept C191486275 @default.
- W2890894871 hasConcept C196875640 @default.
- W2890894871 hasConcept C31258907 @default.
- W2890894871 hasConcept C31972630 @default.
- W2890894871 hasConcept C41008148 @default.
- W2890894871 hasConcept C73313986 @default.
- W2890894871 hasConcept C79974267 @default.
- W2890894871 hasConcept C9417928 @default.
- W2890894871 hasConceptScore W2890894871C106430172 @default.
- W2890894871 hasConceptScore W2890894871C115961682 @default.
- W2890894871 hasConceptScore W2890894871C118365302 @default.
- W2890894871 hasConceptScore W2890894871C120665830 @default.
- W2890894871 hasConceptScore W2890894871C121332964 @default.
- W2890894871 hasConceptScore W2890894871C123403432 @default.