Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890901076> ?p ?o ?g. }
- W2890901076 endingPage "628" @default.
- W2890901076 startingPage "618" @default.
- W2890901076 abstract "Tree species selected for planting should exhibit both high survival and fast growth. The growth of a tree or forest plantation is affected by the resource supply (light, water and nutrients), the fraction of resources acquired and resource use efficiency. Leaf traits related to the last two processes have the potential to explain the growth rates. In this study, we evaluated 24 leaf traits (morphological and physiological) at the individual level to investigate whether simple leaf traits can be used to predict the variation in relative growth rates of eight native tree species in a mixed plantation in disturbed areas in Central Amazonia 15 months after planting. Tachigali vulgaris and Trattinnickia rhoifolia exhibited the highest growth rates in both height and diameter, which were approximately three and two times higher than those of Bombacopsis macrocalyx, respectively. Species exhibited different establishment strategies as indicated by the functional leaf trait performance. Tachigali vulgaris, Ochroma pyramidale, Trattinnickia rhoifolia and Ceiba pentandra are efficient resource use species, have high light-saturated photosynthetic rates and are tolerant to high irradiance stress. Endlicheria anomala exhibited the worst performance based on functional traits, with the lowest light-saturated photosynthetic rate (Amax) and maximum quantum yield of photosystem II (FV/FM). Of all traits analyzed, 12 leaf traits were correlated with the relative growth rate (RGR). Leaf traits related to resource acquisition, such as individual leaf area, chlorophyll content, leaf water potential and leaf nutrient concentration, were not good predictors of growth. Only stomatal conductance (gs) was related to the RGR. Leaf traits related to photosynthetic use efficiency (carbon use efficiency and photosynthetic nitrogen and phosphorus use efficiency) explained, on average, 20% and 30% of tree growth in height and diameter, respectively. Resource use efficiency traits were better predictors of growth than the individual physiological traits gs and Amax, which explained, on average, 12% and 19% of the growth in height and diameter, respectively. Photosynthetic efficiency-related traits are good predictors of tree growth, and species with high efficiency – such as T. vulgaris, O. pyramidale, T. rhoifolia and C. pentandra – can achieve high growth in Amazonian disturbed areas. The identification of species with better performance during initial establishment can improve the design of mixture plantations in disturbed areas. Additionally, the selection of traits most correlated with growth performance can be more informative for reforestation monitoring; consequently, previous silvicultural interventions can be adopted prior to the reduction in both growth and survival rates." @default.
- W2890901076 created "2018-09-27" @default.
- W2890901076 creator A5019044409 @default.
- W2890901076 creator A5024500393 @default.
- W2890901076 creator A5033780942 @default.
- W2890901076 creator A5056350589 @default.
- W2890901076 creator A5065888691 @default.
- W2890901076 date "2018-12-01" @default.
- W2890901076 modified "2023-10-16" @default.
- W2890901076 title "Leaf traits explaining the growth of tree species planted in a Central Amazonian disturbed area" @default.
- W2890901076 cites W1486912385 @default.
- W2890901076 cites W1493629031 @default.
- W2890901076 cites W180836830 @default.
- W2890901076 cites W1944729816 @default.
- W2890901076 cites W1968272334 @default.
- W2890901076 cites W1971956931 @default.
- W2890901076 cites W1973857092 @default.
- W2890901076 cites W1973939029 @default.
- W2890901076 cites W1979201367 @default.
- W2890901076 cites W1981248839 @default.
- W2890901076 cites W1981752180 @default.
- W2890901076 cites W1989292546 @default.
- W2890901076 cites W1989297236 @default.
- W2890901076 cites W1991372130 @default.
- W2890901076 cites W1993313895 @default.
- W2890901076 cites W1996231206 @default.
- W2890901076 cites W2010216127 @default.
- W2890901076 cites W2010775275 @default.
- W2890901076 cites W2013528322 @default.
- W2890901076 cites W2028857091 @default.
- W2890901076 cites W2030560085 @default.
- W2890901076 cites W2039699912 @default.
- W2890901076 cites W2046857879 @default.
- W2890901076 cites W2050230426 @default.
- W2890901076 cites W2050450101 @default.
- W2890901076 cites W2051550855 @default.
- W2890901076 cites W2065318801 @default.
- W2890901076 cites W2069903502 @default.
- W2890901076 cites W2074957851 @default.
- W2890901076 cites W2075435443 @default.
- W2890901076 cites W2080344679 @default.
- W2890901076 cites W2080570414 @default.
- W2890901076 cites W2083778516 @default.
- W2890901076 cites W2085279168 @default.
- W2890901076 cites W2098818167 @default.
- W2890901076 cites W2100872304 @default.
- W2890901076 cites W2103061136 @default.
- W2890901076 cites W2106237216 @default.
- W2890901076 cites W2107172978 @default.
- W2890901076 cites W2108192475 @default.
- W2890901076 cites W2116453962 @default.
- W2890901076 cites W2127928904 @default.
- W2890901076 cites W2131346365 @default.
- W2890901076 cites W2131795541 @default.
- W2890901076 cites W2142097792 @default.
- W2890901076 cites W2143626721 @default.
- W2890901076 cites W2146988326 @default.
- W2890901076 cites W2148567499 @default.
- W2890901076 cites W2150894023 @default.
- W2890901076 cites W2151968140 @default.
- W2890901076 cites W2157366717 @default.
- W2890901076 cites W2159675452 @default.
- W2890901076 cites W2162753946 @default.
- W2890901076 cites W2164830139 @default.
- W2890901076 cites W2273925209 @default.
- W2890901076 cites W2301967088 @default.
- W2890901076 cites W2343812097 @default.
- W2890901076 cites W2344880441 @default.
- W2890901076 cites W2546429016 @default.
- W2890901076 cites W2562448295 @default.
- W2890901076 cites W2583902587 @default.
- W2890901076 cites W2604446619 @default.
- W2890901076 cites W2737066337 @default.
- W2890901076 cites W2738617574 @default.
- W2890901076 cites W2753294252 @default.
- W2890901076 cites W2759322447 @default.
- W2890901076 cites W2765917319 @default.
- W2890901076 cites W2775417273 @default.
- W2890901076 cites W2800876136 @default.
- W2890901076 cites W2804524328 @default.
- W2890901076 cites W2899007061 @default.
- W2890901076 cites W4253819046 @default.
- W2890901076 doi "https://doi.org/10.1016/j.foreco.2018.08.048" @default.
- W2890901076 hasPublicationYear "2018" @default.
- W2890901076 type Work @default.
- W2890901076 sameAs 2890901076 @default.
- W2890901076 citedByCount "26" @default.
- W2890901076 countsByYear W28909010762020 @default.
- W2890901076 countsByYear W28909010762021 @default.
- W2890901076 countsByYear W28909010762022 @default.
- W2890901076 countsByYear W28909010762023 @default.
- W2890901076 crossrefType "journal-article" @default.
- W2890901076 hasAuthorship W2890901076A5019044409 @default.
- W2890901076 hasAuthorship W2890901076A5024500393 @default.
- W2890901076 hasAuthorship W2890901076A5033780942 @default.
- W2890901076 hasAuthorship W2890901076A5056350589 @default.
- W2890901076 hasAuthorship W2890901076A5065888691 @default.
- W2890901076 hasConcept C101000010 @default.