Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890901115> ?p ?o ?g. }
- W2890901115 endingPage "308" @default.
- W2890901115 startingPage "297" @default.
- W2890901115 abstract "In this paper we review current state-of-the-art in 3D point cloud classification, present a new 3D point cloud classification benchmark data set of single scans with over four billion manually labeled points, and discuss first available results on the benchmark. Much of the stunning recent progress in 2D image interpretation can be attributed to the availability of large amounts of training data, which have enabled the (supervised) learning of deep neural networks. With the data set presented in this paper, we aim to boost the performance of <small>CNNs</small> also for 3D point cloud labeling. Our hope is that this will lead to a breakthrough of deep learning also for 3D (geo-) data. The semantic3D.net data set consists of dense point clouds acquired with static terrestrial laser scanners. It contains eight semantic classes and covers a wide range of urban outdoor scenes, including churches, streets, railroad tracks, squares, villages, soccer fields, and castles. We describe our labeling interface and show that, compared to those already available to the research community, our data set provides denser and more complete point clouds, with a much higher overall number of labeled points. We further provide descriptions of baseline methods and of the first independent submissions, which are indeed based on <small>CNNs</small>, and already show remarkable improvements over prior art. We hope that semantic3D.net will pave the way for deep learning in 3D point cloud analysis, and for 3D representation learning in general." @default.
- W2890901115 created "2018-09-27" @default.
- W2890901115 creator A5005404030 @default.
- W2890901115 creator A5021908609 @default.
- W2890901115 creator A5027636797 @default.
- W2890901115 creator A5044159906 @default.
- W2890901115 creator A5051085492 @default.
- W2890901115 creator A5071121905 @default.
- W2890901115 date "2018-05-01" @default.
- W2890901115 modified "2023-10-14" @default.
- W2890901115 title "Large-Scale Supervised Learning For 3D Point Cloud Labeling: Semantic3d.Net" @default.
- W2890901115 cites W114517082 @default.
- W2890901115 cites W125693051 @default.
- W2890901115 cites W16018159 @default.
- W2890901115 cites W1686810756 @default.
- W2890901115 cites W172584396 @default.
- W2890901115 cites W1901129140 @default.
- W2890901115 cites W1903029394 @default.
- W2890901115 cites W1920022804 @default.
- W2890901115 cites W1973644502 @default.
- W2890901115 cites W1977271893 @default.
- W2890901115 cites W1985908905 @default.
- W2890901115 cites W1996749420 @default.
- W2890901115 cites W2027710719 @default.
- W2890901115 cites W2031489346 @default.
- W2890901115 cites W2041170980 @default.
- W2890901115 cites W2059385239 @default.
- W2890901115 cites W2067191022 @default.
- W2890901115 cites W2073700113 @default.
- W2890901115 cites W2088377542 @default.
- W2890901115 cites W2099606917 @default.
- W2890901115 cites W2101077466 @default.
- W2890901115 cites W2101926813 @default.
- W2890901115 cites W2103348513 @default.
- W2890901115 cites W2103820944 @default.
- W2890901115 cites W2108598243 @default.
- W2890901115 cites W2113137767 @default.
- W2890901115 cites W2115728367 @default.
- W2890901115 cites W2116877738 @default.
- W2890901115 cites W2117539524 @default.
- W2890901115 cites W2132563333 @default.
- W2890901115 cites W2132761823 @default.
- W2890901115 cites W2141376824 @default.
- W2890901115 cites W2143110079 @default.
- W2890901115 cites W2144502914 @default.
- W2890901115 cites W2145607950 @default.
- W2890901115 cites W2147800946 @default.
- W2890901115 cites W2148293384 @default.
- W2890901115 cites W2156067790 @default.
- W2890901115 cites W2159213092 @default.
- W2890901115 cites W2160643963 @default.
- W2890901115 cites W2181095272 @default.
- W2890901115 cites W2194775991 @default.
- W2890901115 cites W2202947584 @default.
- W2890901115 cites W2211722331 @default.
- W2890901115 cites W2229637417 @default.
- W2890901115 cites W2293372129 @default.
- W2890901115 cites W250737475 @default.
- W2890901115 cites W2511691466 @default.
- W2890901115 cites W2552796391 @default.
- W2890901115 cites W2556802233 @default.
- W2890901115 cites W2560609797 @default.
- W2890901115 cites W2603429625 @default.
- W2890901115 cites W2609719703 @default.
- W2890901115 cites W2609946960 @default.
- W2890901115 cites W2614059183 @default.
- W2890901115 cites W2963121255 @default.
- W2890901115 cites W2963721253 @default.
- W2890901115 cites W2963809831 @default.
- W2890901115 cites W2963881378 @default.
- W2890901115 cites W2964027736 @default.
- W2890901115 cites W337610345 @default.
- W2890901115 cites W6908809 @default.
- W2890901115 cites W74716078 @default.
- W2890901115 cites W753012316 @default.
- W2890901115 doi "https://doi.org/10.14358/pers.84.5.297" @default.
- W2890901115 hasPublicationYear "2018" @default.
- W2890901115 type Work @default.
- W2890901115 sameAs 2890901115 @default.
- W2890901115 citedByCount "15" @default.
- W2890901115 countsByYear W28909011152019 @default.
- W2890901115 countsByYear W28909011152020 @default.
- W2890901115 countsByYear W28909011152021 @default.
- W2890901115 countsByYear W28909011152023 @default.
- W2890901115 crossrefType "journal-article" @default.
- W2890901115 hasAuthorship W2890901115A5005404030 @default.
- W2890901115 hasAuthorship W2890901115A5021908609 @default.
- W2890901115 hasAuthorship W2890901115A5027636797 @default.
- W2890901115 hasAuthorship W2890901115A5044159906 @default.
- W2890901115 hasAuthorship W2890901115A5051085492 @default.
- W2890901115 hasAuthorship W2890901115A5071121905 @default.
- W2890901115 hasConcept C108583219 @default.
- W2890901115 hasConcept C111919701 @default.
- W2890901115 hasConcept C119857082 @default.
- W2890901115 hasConcept C124101348 @default.
- W2890901115 hasConcept C131979681 @default.
- W2890901115 hasConcept C154945302 @default.
- W2890901115 hasConcept C177264268 @default.