Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890903614> ?p ?o ?g. }
- W2890903614 endingPage "445" @default.
- W2890903614 startingPage "434" @default.
- W2890903614 abstract "Abstract The generation of attenuated seismic reflection data can be described via a nonstationary convolution model with quality factor Q. In according with the linear matrix-matrix multiplication operation that is deduced to depict the multichannel nonstationary seismic received signal, we present a spatially correlated reflectivity inversion approach with the Q estimation based on block sparse Bayesian learning (bSBL) and an lp -norm criterion. In contrast to pre-existingtime-variant deconvolution , the proposed technique can eliminate the wavelet-filtering and Q-filtering effect simultaneously and retrieve an optimal reflectivity matrix without providing Q value by anticipation. Through introducing the lp-norm criterion and scanning Q strategy, we could capture the optimal Q to calculate the blurring operator in the inversion function. The inverted reflectivity result will be satisfied with presupposition that multi-trace reflectivity is comparatively sparse corresponding to its minimum lp-norm when the optimal Q structure is applied to build the attenuation equation. In reflectivity inversion area, the relationship among reflection spikes in adjacent traces as a priori information is represented by a covariance matrix of reflectivity model in the bSBL framework and assists in solving procedure to promote the inversion precision. To diminish the influence of man-made parameter selection, the hyperparameters of reflectivity and noise model are estimated in virtue of expectation-maximization (EM) algorithm. The contribution of spatial correlation could guarantee a higher quality of reflectivity image. New method merges the multichannel reflectivity inversion and Q estimation into a single processing and avoids the drawback of the conventional Q extraction technique. Synthetic and field data sets prove the practicality of the developed technique and indicate the favorable anti-noise capability." @default.
- W2890903614 created "2018-09-27" @default.
- W2890903614 creator A5001821577 @default.
- W2890903614 creator A5008135736 @default.
- W2890903614 creator A5017453821 @default.
- W2890903614 creator A5021088424 @default.
- W2890903614 creator A5062494751 @default.
- W2890903614 date "2018-12-01" @default.
- W2890903614 modified "2023-09-27" @default.
- W2890903614 title "Multichannel block sparse Bayesian learning reflectivity inversion with l-norm criterion-based Q estimation" @default.
- W2890903614 cites W1830302554 @default.
- W2890903614 cites W1965970230 @default.
- W2890903614 cites W1976488156 @default.
- W2890903614 cites W1980811494 @default.
- W2890903614 cites W1993807166 @default.
- W2890903614 cites W1994413529 @default.
- W2890903614 cites W1998596672 @default.
- W2890903614 cites W2011157134 @default.
- W2890903614 cites W2015394014 @default.
- W2890903614 cites W2019024593 @default.
- W2890903614 cites W2030400978 @default.
- W2890903614 cites W2036036302 @default.
- W2890903614 cites W2037971896 @default.
- W2890903614 cites W2043260516 @default.
- W2890903614 cites W2043289683 @default.
- W2890903614 cites W2050847261 @default.
- W2890903614 cites W2057126913 @default.
- W2890903614 cites W2057854579 @default.
- W2890903614 cites W2058025082 @default.
- W2890903614 cites W206380879 @default.
- W2890903614 cites W2074415627 @default.
- W2890903614 cites W2082667383 @default.
- W2890903614 cites W2109638903 @default.
- W2890903614 cites W2110299163 @default.
- W2890903614 cites W2110741348 @default.
- W2890903614 cites W2113920449 @default.
- W2890903614 cites W2116232293 @default.
- W2890903614 cites W2120870926 @default.
- W2890903614 cites W2123112729 @default.
- W2890903614 cites W2128073813 @default.
- W2890903614 cites W2130940196 @default.
- W2890903614 cites W2136987638 @default.
- W2890903614 cites W2143504795 @default.
- W2890903614 cites W2146000945 @default.
- W2890903614 cites W2149324296 @default.
- W2890903614 cites W2150725536 @default.
- W2890903614 cites W2152279006 @default.
- W2890903614 cites W2157522867 @default.
- W2890903614 cites W2158677781 @default.
- W2890903614 cites W2194603512 @default.
- W2890903614 cites W2324328144 @default.
- W2890903614 cites W2335070299 @default.
- W2890903614 cites W2339333631 @default.
- W2890903614 cites W2594940276 @default.
- W2890903614 cites W2737396798 @default.
- W2890903614 cites W2790832329 @default.
- W2890903614 cites W4211012425 @default.
- W2890903614 doi "https://doi.org/10.1016/j.jappgeo.2018.09.016" @default.
- W2890903614 hasPublicationYear "2018" @default.
- W2890903614 type Work @default.
- W2890903614 sameAs 2890903614 @default.
- W2890903614 citedByCount "12" @default.
- W2890903614 countsByYear W28909036142019 @default.
- W2890903614 countsByYear W28909036142020 @default.
- W2890903614 countsByYear W28909036142021 @default.
- W2890903614 countsByYear W28909036142022 @default.
- W2890903614 crossrefType "journal-article" @default.
- W2890903614 hasAuthorship W2890903614A5001821577 @default.
- W2890903614 hasAuthorship W2890903614A5008135736 @default.
- W2890903614 hasAuthorship W2890903614A5017453821 @default.
- W2890903614 hasAuthorship W2890903614A5021088424 @default.
- W2890903614 hasAuthorship W2890903614A5062494751 @default.
- W2890903614 hasConcept C107673813 @default.
- W2890903614 hasConcept C108597893 @default.
- W2890903614 hasConcept C11413529 @default.
- W2890903614 hasConcept C114614502 @default.
- W2890903614 hasConcept C120665830 @default.
- W2890903614 hasConcept C121332964 @default.
- W2890903614 hasConcept C127313418 @default.
- W2890903614 hasConcept C153180895 @default.
- W2890903614 hasConcept C154945302 @default.
- W2890903614 hasConcept C165205528 @default.
- W2890903614 hasConcept C17744445 @default.
- W2890903614 hasConcept C1893757 @default.
- W2890903614 hasConcept C191795146 @default.
- W2890903614 hasConcept C199539241 @default.
- W2890903614 hasConcept C2777210771 @default.
- W2890903614 hasConcept C33923547 @default.
- W2890903614 hasConcept C41008148 @default.
- W2890903614 hasConcept C77928131 @default.
- W2890903614 hasConceptScore W2890903614C107673813 @default.
- W2890903614 hasConceptScore W2890903614C108597893 @default.
- W2890903614 hasConceptScore W2890903614C11413529 @default.
- W2890903614 hasConceptScore W2890903614C114614502 @default.
- W2890903614 hasConceptScore W2890903614C120665830 @default.
- W2890903614 hasConceptScore W2890903614C121332964 @default.
- W2890903614 hasConceptScore W2890903614C127313418 @default.
- W2890903614 hasConceptScore W2890903614C153180895 @default.