Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890910059> ?p ?o ?g. }
Showing items 1 to 57 of
57
with 100 items per page.
- W2890910059 abstract "We present preliminary results from NASA NeMO-Net, the first neural multi-modal observation and training network for global coral reef assessment. NeMO-Net is an open-source deep convolutional neural network (CNN) and interactive active learning training software in development which will assess the present and past dynamics of coral reef ecosystems. NeMO-Net exploits active learning and data fusion of mm-scale remotely sensed 3D images of coral reefs captured using fluid lensing with the NASA FluidCam instrument, presently the highest-resolution remote sensing benthic imaging technology capable of removing ocean wave distortion, as well as hyperspectral airborne remote sensing data from the ongoing NASA CORAL mission and lower-resolution satellite data to determine coral reef ecosystem makeup globally at unprecedented spatial and temporal scales. Aquatic ecosystems, particularly coral reefs, remain quantitatively misrepresented by low- resolution remote sensing as a result of refractive distortion from ocean waves, optical attenuation, and remoteness. Machine learning classification of coral reefs using FluidCam mm-scale 3D data show that present satellite and airborne remote sensing techniques poorly characterize coral reef percent living cover, morphology type, and species breakdown at the mm, cm, and meter scales. Indeed, current global assessments of coral reef cover and morphology classification based on km-scale satellite data alone can suffer from segmentation errors greater than 40%, capable of change detection only on yearly temporal scales and decameter spatial scales, significantly hindering our understanding of patterns and processes in marine biodiversity at a time when these ecosystems are experiencing unprecedented anthropogenic pressures, ocean acidification, and sea surface temperature rise. NeMO-Net leverages our augmented machine learning algorithm that demonstrates data fusion of regional FluidCam (mm, cm-scale) airborne remote sensing with global low-resolution (m, km-scale) airborne and spaceborne imagery to reduce classification errors up to 80% over regional scales. Such technologies can substantially enhance our ability to assess coral reef ecosystems dynamics." @default.
- W2890910059 created "2018-09-27" @default.
- W2890910059 creator A5021433875 @default.
- W2890910059 date "2018-06-21" @default.
- W2890910059 modified "2023-09-26" @default.
- W2890910059 title "NASA NeMO-Net" @default.
- W2890910059 hasPublicationYear "2018" @default.
- W2890910059 type Work @default.
- W2890910059 sameAs 2890910059 @default.
- W2890910059 citedByCount "0" @default.
- W2890910059 crossrefType "journal-article" @default.
- W2890910059 hasAuthorship W2890910059A5021433875 @default.
- W2890910059 hasConcept C103474955 @default.
- W2890910059 hasConcept C111368507 @default.
- W2890910059 hasConcept C127313418 @default.
- W2890910059 hasConcept C143020374 @default.
- W2890910059 hasConcept C159078339 @default.
- W2890910059 hasConcept C39432304 @default.
- W2890910059 hasConcept C62649853 @default.
- W2890910059 hasConcept C77044568 @default.
- W2890910059 hasConcept C79367842 @default.
- W2890910059 hasConceptScore W2890910059C103474955 @default.
- W2890910059 hasConceptScore W2890910059C111368507 @default.
- W2890910059 hasConceptScore W2890910059C127313418 @default.
- W2890910059 hasConceptScore W2890910059C143020374 @default.
- W2890910059 hasConceptScore W2890910059C159078339 @default.
- W2890910059 hasConceptScore W2890910059C39432304 @default.
- W2890910059 hasConceptScore W2890910059C62649853 @default.
- W2890910059 hasConceptScore W2890910059C77044568 @default.
- W2890910059 hasConceptScore W2890910059C79367842 @default.
- W2890910059 hasLocation W28909100591 @default.
- W2890910059 hasOpenAccess W2890910059 @default.
- W2890910059 hasPrimaryLocation W28909100591 @default.
- W2890910059 hasRelatedWork W110241425 @default.
- W2890910059 hasRelatedWork W1489189589 @default.
- W2890910059 hasRelatedWork W1610783457 @default.
- W2890910059 hasRelatedWork W2022786029 @default.
- W2890910059 hasRelatedWork W2066946237 @default.
- W2890910059 hasRelatedWork W2114893327 @default.
- W2890910059 hasRelatedWork W2133647806 @default.
- W2890910059 hasRelatedWork W2166099897 @default.
- W2890910059 hasRelatedWork W2182898478 @default.
- W2890910059 hasRelatedWork W2376728857 @default.
- W2890910059 hasRelatedWork W2548053035 @default.
- W2890910059 hasRelatedWork W2619317478 @default.
- W2890910059 hasRelatedWork W2765368003 @default.
- W2890910059 hasRelatedWork W2794344789 @default.
- W2890910059 hasRelatedWork W2884249550 @default.
- W2890910059 hasRelatedWork W2901480599 @default.
- W2890910059 hasRelatedWork W2981591173 @default.
- W2890910059 hasRelatedWork W3118640338 @default.
- W2890910059 hasRelatedWork W3177895030 @default.
- W2890910059 hasRelatedWork W796035680 @default.
- W2890910059 isParatext "false" @default.
- W2890910059 isRetracted "false" @default.
- W2890910059 magId "2890910059" @default.
- W2890910059 workType "article" @default.