Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890910738> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W2890910738 endingPage "291" @default.
- W2890910738 startingPage "283" @default.
- W2890910738 abstract "We propose a loss function for training a Deep Neural Network (DNN) to segment volumetric data, that accommodates ground truth annotations of 2D projections of the training volumes, instead of annotations of the 3D volumes themselves. In consequence, we significantly decrease the amount of annotations needed for a given training set. We apply the proposed loss to train DNNs for segmentation of vascular and neural networks in microscopy images and demonstrate only a marginal accuracy loss associated to the significant reduction of the annotation effort. The lower labor cost of deploying DNNs, brought in by our method, can contribute to a wide adoption of these techniques for analysis of 3D images of linear structures." @default.
- W2890910738 created "2018-09-27" @default.
- W2890910738 creator A5038674741 @default.
- W2890910738 creator A5044530513 @default.
- W2890910738 creator A5049300388 @default.
- W2890910738 creator A5073304108 @default.
- W2890910738 date "2018-01-01" @default.
- W2890910738 modified "2023-10-01" @default.
- W2890910738 title "Learning to Segment 3D Linear Structures Using Only 2D Annotations" @default.
- W2890910738 cites W1480380503 @default.
- W2890910738 cites W1562009907 @default.
- W2890910738 cites W1606467544 @default.
- W2890910738 cites W1832101600 @default.
- W2890910738 cites W1901129140 @default.
- W2890910738 cites W1924902684 @default.
- W2890910738 cites W2018709063 @default.
- W2890910738 cites W2087031977 @default.
- W2890910738 cites W2129534965 @default.
- W2890910738 cites W2148588751 @default.
- W2890910738 cites W2168545424 @default.
- W2890910738 cites W2464708700 @default.
- W2890910738 cites W2600862990 @default.
- W2890910738 doi "https://doi.org/10.1007/978-3-030-00934-2_32" @default.
- W2890910738 hasPublicationYear "2018" @default.
- W2890910738 type Work @default.
- W2890910738 sameAs 2890910738 @default.
- W2890910738 citedByCount "4" @default.
- W2890910738 countsByYear W28909107382018 @default.
- W2890910738 countsByYear W28909107382019 @default.
- W2890910738 countsByYear W28909107382020 @default.
- W2890910738 countsByYear W28909107382022 @default.
- W2890910738 crossrefType "book-chapter" @default.
- W2890910738 hasAuthorship W2890910738A5038674741 @default.
- W2890910738 hasAuthorship W2890910738A5044530513 @default.
- W2890910738 hasAuthorship W2890910738A5049300388 @default.
- W2890910738 hasAuthorship W2890910738A5073304108 @default.
- W2890910738 hasBestOaLocation W28909107382 @default.
- W2890910738 hasConcept C119857082 @default.
- W2890910738 hasConcept C14036430 @default.
- W2890910738 hasConcept C146849305 @default.
- W2890910738 hasConcept C153180895 @default.
- W2890910738 hasConcept C154945302 @default.
- W2890910738 hasConcept C177264268 @default.
- W2890910738 hasConcept C199360897 @default.
- W2890910738 hasConcept C2776321320 @default.
- W2890910738 hasConcept C2984842247 @default.
- W2890910738 hasConcept C41008148 @default.
- W2890910738 hasConcept C50644808 @default.
- W2890910738 hasConcept C51632099 @default.
- W2890910738 hasConcept C58489278 @default.
- W2890910738 hasConcept C78458016 @default.
- W2890910738 hasConcept C86803240 @default.
- W2890910738 hasConcept C89600930 @default.
- W2890910738 hasConceptScore W2890910738C119857082 @default.
- W2890910738 hasConceptScore W2890910738C14036430 @default.
- W2890910738 hasConceptScore W2890910738C146849305 @default.
- W2890910738 hasConceptScore W2890910738C153180895 @default.
- W2890910738 hasConceptScore W2890910738C154945302 @default.
- W2890910738 hasConceptScore W2890910738C177264268 @default.
- W2890910738 hasConceptScore W2890910738C199360897 @default.
- W2890910738 hasConceptScore W2890910738C2776321320 @default.
- W2890910738 hasConceptScore W2890910738C2984842247 @default.
- W2890910738 hasConceptScore W2890910738C41008148 @default.
- W2890910738 hasConceptScore W2890910738C50644808 @default.
- W2890910738 hasConceptScore W2890910738C51632099 @default.
- W2890910738 hasConceptScore W2890910738C58489278 @default.
- W2890910738 hasConceptScore W2890910738C78458016 @default.
- W2890910738 hasConceptScore W2890910738C86803240 @default.
- W2890910738 hasConceptScore W2890910738C89600930 @default.
- W2890910738 hasLocation W28909107381 @default.
- W2890910738 hasLocation W28909107382 @default.
- W2890910738 hasOpenAccess W2890910738 @default.
- W2890910738 hasPrimaryLocation W28909107381 @default.
- W2890910738 hasRelatedWork W2744103196 @default.
- W2890910738 hasRelatedWork W2772521755 @default.
- W2890910738 hasRelatedWork W2792951589 @default.
- W2890910738 hasRelatedWork W2972743278 @default.
- W2890910738 hasRelatedWork W2998730588 @default.
- W2890910738 hasRelatedWork W3012547397 @default.
- W2890910738 hasRelatedWork W3098077856 @default.
- W2890910738 hasRelatedWork W3144574764 @default.
- W2890910738 hasRelatedWork W4281637929 @default.
- W2890910738 hasRelatedWork W4362604364 @default.
- W2890910738 isParatext "false" @default.
- W2890910738 isRetracted "false" @default.
- W2890910738 magId "2890910738" @default.
- W2890910738 workType "book-chapter" @default.