Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890911816> ?p ?o ?g. }
- W2890911816 abstract "Learning interpretable features from complex multilayer networks is a challenging and important problem. The need for such representations is particularly evident in multilayer networks of the brain, where nodal characteristics may help model and differentiate regions of the brain according to individual, cognitive task, or disease. Motivated by this problem, we introduce the multi-node2vec algorithm, an efficient and scalable feature engineering method that automatically learns continuous node feature representations from multilayer networks. Multi-node2vec relies upon a second-order random walk sampling procedure that efficiently explores the inner- and intra- layer ties of the observed multilayer network is utilized to identify multilayer neighborhoods. Maximum likelihood estimators of the nodal features are identified through the use of the Skip-gram neural network model on the collection of sampled neighborhoods. We investigate the conditions under which multi-node2vec is an approximation of a closed-form matrix factorization problem. We demonstrate the efficacy of multi-node2vec on a multilayer functional brain network from resting state fMRI scans over a group of 74 healthy individuals. We find that multi-node2vec outperforms contemporary methods on complex networks, and that multi-node2vec identifies nodal characteristics that closely associate with the functional organization of the brain." @default.
- W2890911816 created "2018-09-27" @default.
- W2890911816 creator A5001970503 @default.
- W2890911816 creator A5016000044 @default.
- W2890911816 creator A5027553813 @default.
- W2890911816 creator A5087357918 @default.
- W2890911816 date "2018-09-17" @default.
- W2890911816 modified "2023-09-23" @default.
- W2890911816 title "Fast embedding of multilayer networks: An algorithm and application to group fMRI." @default.
- W2890911816 cites W1747101780 @default.
- W2890911816 cites W1926127516 @default.
- W2890911816 cites W1958276906 @default.
- W2890911816 cites W1964417512 @default.
- W2890911816 cites W1974267840 @default.
- W2890911816 cites W1979426401 @default.
- W2890911816 cites W1983183710 @default.
- W2890911816 cites W1983485726 @default.
- W2890911816 cites W1986494276 @default.
- W2890911816 cites W1987924998 @default.
- W2890911816 cites W1990574575 @default.
- W2890911816 cites W1999653836 @default.
- W2890911816 cites W2001325956 @default.
- W2890911816 cites W2005933475 @default.
- W2890911816 cites W2008607322 @default.
- W2890911816 cites W2012559638 @default.
- W2890911816 cites W2020055733 @default.
- W2890911816 cites W2020519533 @default.
- W2890911816 cites W2024729467 @default.
- W2890911816 cites W2041951497 @default.
- W2890911816 cites W2043783389 @default.
- W2890911816 cites W2066459332 @default.
- W2890911816 cites W2074617510 @default.
- W2890911816 cites W2089572795 @default.
- W2890911816 cites W2090668679 @default.
- W2890911816 cites W2097982135 @default.
- W2890911816 cites W2105876678 @default.
- W2890911816 cites W2108112020 @default.
- W2890911816 cites W2125031621 @default.
- W2890911816 cites W2125757815 @default.
- W2890911816 cites W2130354913 @default.
- W2890911816 cites W2133015986 @default.
- W2890911816 cites W2138905229 @default.
- W2890911816 cites W2142029338 @default.
- W2890911816 cites W2143502460 @default.
- W2890911816 cites W2155486879 @default.
- W2890911816 cites W2162551380 @default.
- W2890911816 cites W2167822639 @default.
- W2890911816 cites W2180060901 @default.
- W2890911816 cites W2250539671 @default.
- W2890911816 cites W2329542163 @default.
- W2890911816 cites W2442470680 @default.
- W2890911816 cites W2474090883 @default.
- W2890911816 cites W2519887557 @default.
- W2890911816 cites W2612872092 @default.
- W2890911816 cites W2754165364 @default.
- W2890911816 cites W2802536499 @default.
- W2890911816 cites W2807592573 @default.
- W2890911816 cites W2886913615 @default.
- W2890911816 cites W2890818659 @default.
- W2890911816 cites W2930676379 @default.
- W2890911816 cites W2950133940 @default.
- W2890911816 cites W2950577311 @default.
- W2890911816 cites W2951665412 @default.
- W2890911816 cites W2952466352 @default.
- W2890911816 cites W2956451617 @default.
- W2890911816 cites W2962756421 @default.
- W2890911816 cites W2963499979 @default.
- W2890911816 cites W2963562062 @default.
- W2890911816 cites W2963784195 @default.
- W2890911816 cites W3102085030 @default.
- W2890911816 cites W3103589660 @default.
- W2890911816 cites W3103995645 @default.
- W2890911816 cites W3105705953 @default.
- W2890911816 cites W3106488715 @default.
- W2890911816 hasPublicationYear "2018" @default.
- W2890911816 type Work @default.
- W2890911816 sameAs 2890911816 @default.
- W2890911816 citedByCount "2" @default.
- W2890911816 countsByYear W28909118162020 @default.
- W2890911816 crossrefType "posted-content" @default.
- W2890911816 hasAuthorship W2890911816A5001970503 @default.
- W2890911816 hasAuthorship W2890911816A5016000044 @default.
- W2890911816 hasAuthorship W2890911816A5027553813 @default.
- W2890911816 hasAuthorship W2890911816A5087357918 @default.
- W2890911816 hasConcept C11413529 @default.
- W2890911816 hasConcept C138885662 @default.
- W2890911816 hasConcept C153180895 @default.
- W2890911816 hasConcept C154945302 @default.
- W2890911816 hasConcept C2776401178 @default.
- W2890911816 hasConcept C41008148 @default.
- W2890911816 hasConcept C41895202 @default.
- W2890911816 hasConcept C48044578 @default.
- W2890911816 hasConcept C77088390 @default.
- W2890911816 hasConcept C80444323 @default.
- W2890911816 hasConceptScore W2890911816C11413529 @default.
- W2890911816 hasConceptScore W2890911816C138885662 @default.
- W2890911816 hasConceptScore W2890911816C153180895 @default.
- W2890911816 hasConceptScore W2890911816C154945302 @default.
- W2890911816 hasConceptScore W2890911816C2776401178 @default.
- W2890911816 hasConceptScore W2890911816C41008148 @default.