Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890914408> ?p ?o ?g. }
- W2890914408 abstract "A typical quandary in geometric functions theory is to study a functional composed of amalgamations of the coefficients of the pristine function. Conventionally, there is a parameter over which the extremal value of the functional is needed. The present paper deals with consequential functional of this type. By making use of linear operator due to Hohlov cite{6}, a new subclass $mathcal{R}_{a,b}^{c}$ of analytic functions defined in the open unit disk is introduced. For both real and complex parameter, the sharp bounds for the Fekete-Szeg{o} problems are found. An attempt has also been taken to found the sharp upper bound to the second and third Hankel determinant for functions belonging to this class. All the extremal functions are express in term of Gauss hypergeometric function and convolution. Finally, the sufficient condition for functions to be in $mathcal{R}_{a,b}^{c}$ is derived. Relevant connections of the new results with well known ones are pointed out." @default.
- W2890914408 created "2018-09-27" @default.
- W2890914408 creator A5001332605 @default.
- W2890914408 creator A5009495045 @default.
- W2890914408 creator A5078060176 @default.
- W2890914408 date "2018-09-17" @default.
- W2890914408 modified "2023-10-16" @default.
- W2890914408 title "Coefficient estimates of certain subclasses of analytic functions associated with Hohlov operator" @default.
- W2890914408 cites W1526767009 @default.
- W2890914408 cites W1597786665 @default.
- W2890914408 cites W1928458185 @default.
- W2890914408 cites W1968849744 @default.
- W2890914408 cites W1982930371 @default.
- W2890914408 cites W1985150409 @default.
- W2890914408 cites W1993281128 @default.
- W2890914408 cites W1998690851 @default.
- W2890914408 cites W2003402708 @default.
- W2890914408 cites W2006856566 @default.
- W2890914408 cites W2015013039 @default.
- W2890914408 cites W2017520442 @default.
- W2890914408 cites W2018418340 @default.
- W2890914408 cites W2027335482 @default.
- W2890914408 cites W2035234787 @default.
- W2890914408 cites W2041863544 @default.
- W2890914408 cites W2056594599 @default.
- W2890914408 cites W2070384239 @default.
- W2890914408 cites W2078952312 @default.
- W2890914408 cites W2086777251 @default.
- W2890914408 cites W2090842005 @default.
- W2890914408 cites W2092747667 @default.
- W2890914408 cites W2124539717 @default.
- W2890914408 cites W2134197866 @default.
- W2890914408 cites W2153535232 @default.
- W2890914408 cites W2156977470 @default.
- W2890914408 cites W2216025235 @default.
- W2890914408 cites W2220155645 @default.
- W2890914408 cites W2253929176 @default.
- W2890914408 cites W2339606488 @default.
- W2890914408 cites W2520173458 @default.
- W2890914408 cites W2735160284 @default.
- W2890914408 cites W3160847557 @default.
- W2890914408 cites W3197658761 @default.
- W2890914408 doi "https://doi.org/10.48550/arxiv.1809.06515" @default.
- W2890914408 hasPublicationYear "2018" @default.
- W2890914408 type Work @default.
- W2890914408 sameAs 2890914408 @default.
- W2890914408 citedByCount "0" @default.
- W2890914408 crossrefType "posted-content" @default.
- W2890914408 hasAuthorship W2890914408A5001332605 @default.
- W2890914408 hasAuthorship W2890914408A5009495045 @default.
- W2890914408 hasAuthorship W2890914408A5078060176 @default.
- W2890914408 hasBestOaLocation W28909144081 @default.
- W2890914408 hasConcept C104317684 @default.
- W2890914408 hasConcept C107837686 @default.
- W2890914408 hasConcept C112468886 @default.
- W2890914408 hasConcept C119857082 @default.
- W2890914408 hasConcept C121332964 @default.
- W2890914408 hasConcept C134306372 @default.
- W2890914408 hasConcept C14036430 @default.
- W2890914408 hasConcept C154945302 @default.
- W2890914408 hasConcept C158448853 @default.
- W2890914408 hasConcept C161794534 @default.
- W2890914408 hasConcept C17020691 @default.
- W2890914408 hasConcept C176671685 @default.
- W2890914408 hasConcept C185592680 @default.
- W2890914408 hasConcept C18903297 @default.
- W2890914408 hasConcept C197320386 @default.
- W2890914408 hasConcept C199479865 @default.
- W2890914408 hasConcept C202444582 @default.
- W2890914408 hasConcept C205979905 @default.
- W2890914408 hasConcept C2777212361 @default.
- W2890914408 hasConcept C2777299769 @default.
- W2890914408 hasConcept C33923547 @default.
- W2890914408 hasConcept C41008148 @default.
- W2890914408 hasConcept C45347329 @default.
- W2890914408 hasConcept C47177299 @default.
- W2890914408 hasConcept C50644808 @default.
- W2890914408 hasConcept C55493867 @default.
- W2890914408 hasConcept C61797465 @default.
- W2890914408 hasConcept C62520636 @default.
- W2890914408 hasConcept C78458016 @default.
- W2890914408 hasConcept C86339819 @default.
- W2890914408 hasConcept C86803240 @default.
- W2890914408 hasConceptScore W2890914408C104317684 @default.
- W2890914408 hasConceptScore W2890914408C107837686 @default.
- W2890914408 hasConceptScore W2890914408C112468886 @default.
- W2890914408 hasConceptScore W2890914408C119857082 @default.
- W2890914408 hasConceptScore W2890914408C121332964 @default.
- W2890914408 hasConceptScore W2890914408C134306372 @default.
- W2890914408 hasConceptScore W2890914408C14036430 @default.
- W2890914408 hasConceptScore W2890914408C154945302 @default.
- W2890914408 hasConceptScore W2890914408C158448853 @default.
- W2890914408 hasConceptScore W2890914408C161794534 @default.
- W2890914408 hasConceptScore W2890914408C17020691 @default.
- W2890914408 hasConceptScore W2890914408C176671685 @default.
- W2890914408 hasConceptScore W2890914408C185592680 @default.
- W2890914408 hasConceptScore W2890914408C18903297 @default.
- W2890914408 hasConceptScore W2890914408C197320386 @default.
- W2890914408 hasConceptScore W2890914408C199479865 @default.
- W2890914408 hasConceptScore W2890914408C202444582 @default.