Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890915788> ?p ?o ?g. }
- W2890915788 endingPage "2364" @default.
- W2890915788 startingPage "2355" @default.
- W2890915788 abstract "ConspectusActive matter, some of whose constituent elements are active agents that can move autonomously, behaves very differently from matter without such agents. The active agents can self-assemble into structures with a variety of forms and dynamical properties. Swarming, where groups of living agents move cooperatively, is commonly observed in the biological realm, but it is also seen in the physical realm in systems containing small synthetic motors. The existence of diverse forms of self-assembled structures has stimulated the search for new applications that involve active matter. We consider active systems where the agents are synthetic chemically powered motors with various shapes and sizes that operate by phoretic mechanisms, especially self-diffusiophoresis. These motors are able to move autonomously in solution by consuming fuel from their environment. Chemical reactions take place on catalytic portions of the motor surface and give rise to concentration gradients that lead to directed motion. They can operate in this way only if the chemical composition of the system is maintained in a nonequilibrium state since no net fluxes are possible in a system at equilibrium.In contrast to many other active systems, chemistry plays an essential part in determining the properties of the collective dynamics and self-assembly of these chemically powered motor systems. The inhomogeneous concentration fields that result from asymmetric motor reactions are felt by other motors in the system and strongly influence how they move. This chemical coupling effect often dominates other interactions due to fluid flow fields and direct interactions among motors and determines the form that the collective dynamics takes. Since we consider small motors with micrometer and nanometer sizes, thermal fluctuations are strong and cannot be neglected. The media in which the motors operate may not be simple and may contain crowding agents or molecular filaments that influence how the motors assemble and move. The collective motion is also influenced by the chemical gradients that arise from reactions in the surrounding medium. By adopting a microscopic perspective, where the motors, fluid environment, and crowding elements are treated at the coarse-grained molecular level, all of the many-body interactions that give rise to the collective behavior naturally emerge from the molecular dynamics. Through simulations and theory, this Account describes how active matter made from chemically powered nanomotors moving in simple and more complicated media can form different dynamical structures that are strongly influenced by interactions arising from cooperative chemical reactions on the motor surfaces." @default.
- W2890915788 created "2018-09-27" @default.
- W2890915788 creator A5035719351 @default.
- W2890915788 creator A5037953474 @default.
- W2890915788 creator A5041147881 @default.
- W2890915788 creator A5045500482 @default.
- W2890915788 date "2018-09-12" @default.
- W2890915788 modified "2023-09-30" @default.
- W2890915788 title "Synthetic Nanomotors: Working Together through Chemistry" @default.
- W2890915788 cites W1573559725 @default.
- W2890915788 cites W1623900593 @default.
- W2890915788 cites W1873756591 @default.
- W2890915788 cites W1914866065 @default.
- W2890915788 cites W1965565493 @default.
- W2890915788 cites W1973078859 @default.
- W2890915788 cites W1975247487 @default.
- W2890915788 cites W1980803050 @default.
- W2890915788 cites W1981410769 @default.
- W2890915788 cites W1982028634 @default.
- W2890915788 cites W1989543568 @default.
- W2890915788 cites W1998368798 @default.
- W2890915788 cites W1999116645 @default.
- W2890915788 cites W2014025522 @default.
- W2890915788 cites W2019011788 @default.
- W2890915788 cites W2020858488 @default.
- W2890915788 cites W2023952789 @default.
- W2890915788 cites W2032645679 @default.
- W2890915788 cites W2039580618 @default.
- W2890915788 cites W2042898119 @default.
- W2890915788 cites W2048162211 @default.
- W2890915788 cites W2049933694 @default.
- W2890915788 cites W2060337287 @default.
- W2890915788 cites W2068373894 @default.
- W2890915788 cites W2069079436 @default.
- W2890915788 cites W2074574519 @default.
- W2890915788 cites W2079759526 @default.
- W2890915788 cites W2080107230 @default.
- W2890915788 cites W2083568634 @default.
- W2890915788 cites W2120474701 @default.
- W2890915788 cites W2122468689 @default.
- W2890915788 cites W2130339488 @default.
- W2890915788 cites W2154575853 @default.
- W2890915788 cites W2154743846 @default.
- W2890915788 cites W2162511286 @default.
- W2890915788 cites W2304845716 @default.
- W2890915788 cites W2312689286 @default.
- W2890915788 cites W2333445176 @default.
- W2890915788 cites W2405120243 @default.
- W2890915788 cites W2414785674 @default.
- W2890915788 cites W2577588738 @default.
- W2890915788 cites W2595336155 @default.
- W2890915788 cites W2604290621 @default.
- W2890915788 cites W2795408967 @default.
- W2890915788 cites W2806963461 @default.
- W2890915788 cites W2875864584 @default.
- W2890915788 cites W3098044051 @default.
- W2890915788 cites W3098764404 @default.
- W2890915788 cites W3101701886 @default.
- W2890915788 cites W3102947909 @default.
- W2890915788 cites W3103212563 @default.
- W2890915788 cites W3103339725 @default.
- W2890915788 cites W3104436877 @default.
- W2890915788 cites W3105730272 @default.
- W2890915788 cites W3106185196 @default.
- W2890915788 cites W3106339744 @default.
- W2890915788 cites W3162426790 @default.
- W2890915788 cites W4234281255 @default.
- W2890915788 cites W4246268360 @default.
- W2890915788 cites W561848945 @default.
- W2890915788 doi "https://doi.org/10.1021/acs.accounts.8b00239" @default.
- W2890915788 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30207448" @default.
- W2890915788 hasPublicationYear "2018" @default.
- W2890915788 type Work @default.
- W2890915788 sameAs 2890915788 @default.
- W2890915788 citedByCount "40" @default.
- W2890915788 countsByYear W28909157882018 @default.
- W2890915788 countsByYear W28909157882019 @default.
- W2890915788 countsByYear W28909157882020 @default.
- W2890915788 countsByYear W28909157882021 @default.
- W2890915788 countsByYear W28909157882022 @default.
- W2890915788 countsByYear W28909157882023 @default.
- W2890915788 crossrefType "journal-article" @default.
- W2890915788 hasAuthorship W2890915788A5035719351 @default.
- W2890915788 hasAuthorship W2890915788A5037953474 @default.
- W2890915788 hasAuthorship W2890915788A5041147881 @default.
- W2890915788 hasAuthorship W2890915788A5045500482 @default.
- W2890915788 hasConcept C121332964 @default.
- W2890915788 hasConcept C127413603 @default.
- W2890915788 hasConcept C154945302 @default.
- W2890915788 hasConcept C159467904 @default.
- W2890915788 hasConcept C160408235 @default.
- W2890915788 hasConcept C171250308 @default.
- W2890915788 hasConcept C177801218 @default.
- W2890915788 hasConcept C178790620 @default.
- W2890915788 hasConcept C183696295 @default.
- W2890915788 hasConcept C185592680 @default.
- W2890915788 hasConcept C186060115 @default.
- W2890915788 hasConcept C192562407 @default.