Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890918932> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W2890918932 abstract "This paper considers the resource allocation problem in wireless systems over an unknown time-varying non-stationary channel. The goal is to maximize a utility function, such as a capacity function, over a set of wireless nodes while satisfying a set of resource constraints. To bypass the need for a model for channel distribution as it varies over time, samples of the channel are taken at every time epoch to estimate the channel. The resulting stochastic optimization problem is converted in its Lagrange dual problem, where the resulting stochastic optimization problem can viewed equivalently as minimizing a certain empirical risk measure, a well-studied problem in machine learning. The second order Newton's method is used to quickly learn statistically approximated optimal resource allocation policies over the sampled dual function as the channel evolves over time epochs. The quadratic convergence rate of Newton is used to establish, under certain conditions on the sampling size and rate of channel variation, an instantaneous learning and tracking of these policies. Numerical simulations demonstrate the effectiveness of the learning algorithm on a low-dimensional wireless capacity maximization problem." @default.
- W2890918932 created "2018-09-27" @default.
- W2890918932 creator A5021418299 @default.
- W2890918932 creator A5025590360 @default.
- W2890918932 creator A5029243115 @default.
- W2890918932 creator A5091474691 @default.
- W2890918932 date "2018-04-01" @default.
- W2890918932 modified "2023-09-26" @default.
- W2890918932 title "Learning Statistically Accurate Resource Allocations in Non-Stationary Wireless Systems" @default.
- W2890918932 cites W2020573937 @default.
- W2890918932 cites W2062729348 @default.
- W2890918932 cites W2147163807 @default.
- W2890918932 cites W2153345187 @default.
- W2890918932 cites W2166196983 @default.
- W2890918932 cites W2171121903 @default.
- W2890918932 cites W2962986403 @default.
- W2890918932 doi "https://doi.org/10.1109/icassp.2018.8461444" @default.
- W2890918932 hasPublicationYear "2018" @default.
- W2890918932 type Work @default.
- W2890918932 sameAs 2890918932 @default.
- W2890918932 citedByCount "2" @default.
- W2890918932 countsByYear W28909189322018 @default.
- W2890918932 countsByYear W28909189322019 @default.
- W2890918932 crossrefType "proceedings-article" @default.
- W2890918932 hasAuthorship W2890918932A5021418299 @default.
- W2890918932 hasAuthorship W2890918932A5025590360 @default.
- W2890918932 hasAuthorship W2890918932A5029243115 @default.
- W2890918932 hasAuthorship W2890918932A5091474691 @default.
- W2890918932 hasConcept C126255220 @default.
- W2890918932 hasConcept C127162648 @default.
- W2890918932 hasConcept C137836250 @default.
- W2890918932 hasConcept C2776330181 @default.
- W2890918932 hasConcept C29202148 @default.
- W2890918932 hasConcept C31258907 @default.
- W2890918932 hasConcept C33923547 @default.
- W2890918932 hasConcept C41008148 @default.
- W2890918932 hasConcept C555944384 @default.
- W2890918932 hasConcept C57869625 @default.
- W2890918932 hasConcept C76155785 @default.
- W2890918932 hasConceptScore W2890918932C126255220 @default.
- W2890918932 hasConceptScore W2890918932C127162648 @default.
- W2890918932 hasConceptScore W2890918932C137836250 @default.
- W2890918932 hasConceptScore W2890918932C2776330181 @default.
- W2890918932 hasConceptScore W2890918932C29202148 @default.
- W2890918932 hasConceptScore W2890918932C31258907 @default.
- W2890918932 hasConceptScore W2890918932C33923547 @default.
- W2890918932 hasConceptScore W2890918932C41008148 @default.
- W2890918932 hasConceptScore W2890918932C555944384 @default.
- W2890918932 hasConceptScore W2890918932C57869625 @default.
- W2890918932 hasConceptScore W2890918932C76155785 @default.
- W2890918932 hasLocation W28909189321 @default.
- W2890918932 hasOpenAccess W2890918932 @default.
- W2890918932 hasPrimaryLocation W28909189321 @default.
- W2890918932 hasRelatedWork W1749663637 @default.
- W2890918932 hasRelatedWork W1990293375 @default.
- W2890918932 hasRelatedWork W2072247954 @default.
- W2890918932 hasRelatedWork W2180694296 @default.
- W2890918932 hasRelatedWork W2186210324 @default.
- W2890918932 hasRelatedWork W2519554247 @default.
- W2890918932 hasRelatedWork W2571578647 @default.
- W2890918932 hasRelatedWork W2588839552 @default.
- W2890918932 hasRelatedWork W2783782435 @default.
- W2890918932 hasRelatedWork W2789661900 @default.
- W2890918932 hasRelatedWork W2792284927 @default.
- W2890918932 hasRelatedWork W2796638446 @default.
- W2890918932 hasRelatedWork W2798339103 @default.
- W2890918932 hasRelatedWork W2886231952 @default.
- W2890918932 hasRelatedWork W2900653008 @default.
- W2890918932 hasRelatedWork W2952090396 @default.
- W2890918932 hasRelatedWork W2952280898 @default.
- W2890918932 hasRelatedWork W2969998752 @default.
- W2890918932 hasRelatedWork W74570535 @default.
- W2890918932 hasRelatedWork W3019557175 @default.
- W2890918932 isParatext "false" @default.
- W2890918932 isRetracted "false" @default.
- W2890918932 magId "2890918932" @default.
- W2890918932 workType "article" @default.