Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890921814> ?p ?o ?g. }
- W2890921814 endingPage "e182716" @default.
- W2890921814 startingPage "e182716" @default.
- W2890921814 abstract "<h3>Importance</h3> Data from electronic health records (EHRs) are increasingly used for risk prediction. However, EHRs do not reliably collect sociodemographic and neighborhood information, which has been shown to be associated with health. The added contribution of neighborhood socioeconomic status (nSES) in predicting health events is unknown and may help inform population-level risk reduction strategies. <h3>Objective</h3> To quantify the association of nSES with adverse outcomes and the value of nSES in predicting the risk of adverse outcomes in EHR-based risk models. <h3>Design, Setting, and Participants</h3> Cohort study in which data from 90 097 patients 18 years or older in the Duke University Health System and Lincoln Community Health Center EHR from January 1, 2009, to December 31, 2015, with at least 1 health care encounter and residence in Durham County, North Carolina, in the year prior to the index date were linked with census tract data to quantify the association between nSES and the risk of adverse outcomes. Machine learning methods were used to develop risk models and determine how adding nSES to EHR data affects risk prediction. Neighborhood socioeconomic status was defined using the Agency for Healthcare Research and Quality SES index, a weighted measure of multiple indicators of neighborhood deprivation. <h3>Main Outcomes and Measures</h3> Outcomes included use of health care services (emergency department and inpatient and outpatient encounters) and hospitalizations due to accidents, asthma, influenza, myocardial infarction, and stroke. <h3>Results</h3> Among the 90 097 patients in the training set of the study (57 507 women and 32 590 men; mean [SD] age, 47.2 [17.7] years) and the 122 812 patients in the testing set of the study (75 517 women and 47 295 men; mean [SD] age, 46.2 [17.9] years), those living in neighborhoods with lower nSES had a shorter time to use of emergency department services and inpatient encounters, as well as a shorter time to hospitalizations due to accidents, asthma, influenza, myocardial infarction, and stroke. The predictive value of nSES varied by outcome of interest (C statistic ranged from 0.50 to 0.63). When added to EHR variables, nSES did not improve predictive performance for any health outcome. <h3>Conclusions and Relevance</h3> Social determinants of health, including nSES, are associated with the health of a patient. However, the results of this study suggest that information on nSES may not contribute much more to risk prediction above and beyond what is already provided by EHR data. Although this result does not mean that integrating social determinants of health into the EHR has no benefit, researchers may be able to use EHR data alone for population risk assessment." @default.
- W2890921814 created "2018-09-27" @default.
- W2890921814 creator A5003197350 @default.
- W2890921814 creator A5012507614 @default.
- W2890921814 creator A5013798210 @default.
- W2890921814 creator A5067727757 @default.
- W2890921814 creator A5088989269 @default.
- W2890921814 date "2018-09-21" @default.
- W2890921814 modified "2023-10-17" @default.
- W2890921814 title "Value of Neighborhood Socioeconomic Status in Predicting Risk of Outcomes in Studies That Use Electronic Health Record Data" @default.
- W2890921814 cites W1576923615 @default.
- W2890921814 cites W1877563293 @default.
- W2890921814 cites W1932708174 @default.
- W2890921814 cites W1970458296 @default.
- W2890921814 cites W1979640865 @default.
- W2890921814 cites W1994259052 @default.
- W2890921814 cites W2017457426 @default.
- W2890921814 cites W2029183370 @default.
- W2890921814 cites W2034044012 @default.
- W2890921814 cites W2036965795 @default.
- W2890921814 cites W2039621665 @default.
- W2890921814 cites W2070230130 @default.
- W2890921814 cites W2070595900 @default.
- W2890921814 cites W2100964346 @default.
- W2890921814 cites W2106988272 @default.
- W2890921814 cites W2111183181 @default.
- W2890921814 cites W2120579447 @default.
- W2890921814 cites W2129498074 @default.
- W2890921814 cites W2139236032 @default.
- W2890921814 cites W2140302476 @default.
- W2890921814 cites W2144189101 @default.
- W2890921814 cites W2144470468 @default.
- W2890921814 cites W2158844733 @default.
- W2890921814 cites W2199075507 @default.
- W2890921814 cites W2204282962 @default.
- W2890921814 cites W2324866533 @default.
- W2890921814 cites W2327150763 @default.
- W2890921814 cites W2395172628 @default.
- W2890921814 cites W2403232547 @default.
- W2890921814 cites W2548501633 @default.
- W2890921814 cites W2565959004 @default.
- W2890921814 cites W2611236118 @default.
- W2890921814 cites W2737948908 @default.
- W2890921814 cites W2751300459 @default.
- W2890921814 cites W2752422532 @default.
- W2890921814 cites W2770872351 @default.
- W2890921814 cites W2771201185 @default.
- W2890921814 cites W2911964244 @default.
- W2890921814 cites W296801455 @default.
- W2890921814 cites W3099478002 @default.
- W2890921814 cites W4238201062 @default.
- W2890921814 cites W4247450356 @default.
- W2890921814 cites W4250544412 @default.
- W2890921814 cites W4296976768 @default.
- W2890921814 doi "https://doi.org/10.1001/jamanetworkopen.2018.2716" @default.
- W2890921814 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6324505" @default.
- W2890921814 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30646172" @default.
- W2890921814 hasPublicationYear "2018" @default.
- W2890921814 type Work @default.
- W2890921814 sameAs 2890921814 @default.
- W2890921814 citedByCount "54" @default.
- W2890921814 countsByYear W28909218142019 @default.
- W2890921814 countsByYear W28909218142020 @default.
- W2890921814 countsByYear W28909218142021 @default.
- W2890921814 countsByYear W28909218142022 @default.
- W2890921814 countsByYear W28909218142023 @default.
- W2890921814 crossrefType "journal-article" @default.
- W2890921814 hasAuthorship W2890921814A5003197350 @default.
- W2890921814 hasAuthorship W2890921814A5012507614 @default.
- W2890921814 hasAuthorship W2890921814A5013798210 @default.
- W2890921814 hasAuthorship W2890921814A5067727757 @default.
- W2890921814 hasAuthorship W2890921814A5088989269 @default.
- W2890921814 hasBestOaLocation W28909218141 @default.
- W2890921814 hasConcept C147077947 @default.
- W2890921814 hasConcept C160735492 @default.
- W2890921814 hasConcept C162324750 @default.
- W2890921814 hasConcept C2908647359 @default.
- W2890921814 hasConcept C50522688 @default.
- W2890921814 hasConcept C71924100 @default.
- W2890921814 hasConcept C74909509 @default.
- W2890921814 hasConcept C99454951 @default.
- W2890921814 hasConceptScore W2890921814C147077947 @default.
- W2890921814 hasConceptScore W2890921814C160735492 @default.
- W2890921814 hasConceptScore W2890921814C162324750 @default.
- W2890921814 hasConceptScore W2890921814C2908647359 @default.
- W2890921814 hasConceptScore W2890921814C50522688 @default.
- W2890921814 hasConceptScore W2890921814C71924100 @default.
- W2890921814 hasConceptScore W2890921814C74909509 @default.
- W2890921814 hasConceptScore W2890921814C99454951 @default.
- W2890921814 hasIssue "5" @default.
- W2890921814 hasLocation W28909218141 @default.
- W2890921814 hasLocation W28909218142 @default.
- W2890921814 hasLocation W28909218143 @default.
- W2890921814 hasLocation W28909218144 @default.
- W2890921814 hasOpenAccess W2890921814 @default.
- W2890921814 hasPrimaryLocation W28909218141 @default.
- W2890921814 hasRelatedWork W1991434599 @default.
- W2890921814 hasRelatedWork W2011118020 @default.