Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890926434> ?p ?o ?g. }
- W2890926434 endingPage "150" @default.
- W2890926434 startingPage "138" @default.
- W2890926434 abstract "Abstract Constant concentration ratios of trace elements of similar incompatibility in oceanic basalts have been used to determine the abundances and ratios of incompatible elements in mantle sources. However, the Mo content in the depleted mantle estimated from Mo/Ce of oceanic basalts is much lower than the estimates based on Mo contents of mantle peridotites (25 ± 7 ng/g versus 113–180 ng/g). This discrepancy partly reflects uncertainties about the geochemical behavior of Mo in the upper mantle. New Mo concentration data obtained on unserpentinized spinel-facies lherzolites, harzburgites, dunites and pyroxenites (n = 47) from the Balmuccia and Baldissero mantle tectonites (Ivrea-Verbano Zone, Italian Alps) provide new insights into the magmatic behavior of Mo and its content in the depleted mantle. The peridotites and pyroxenites display variable and very low Mo contents (4–16 and 3–11 ng/g, respectively). A slightly serpentinized peridotite shows the highest Mo content of 37 ng/g. The Mo contents show no systematic variation with other incompatible or compatible elements. Chromium spinel in the mantle rocks likely does not control the behavior of Mo because complete or incomplete digestion of spinel did not lead to a noticeable change in Mo contents. The data indicate incorporation of little Mo into olivine, pyroxene and spinel, consistent with the predominant occurrence of Mo6+ and the experimentally-determined very low partition coefficients at typical upper mantle conditions. Bulk rock Mo contents from these mantle rocks, upper limits of Mo contents in sulfides and the lack of variations of Mo concentrations with varying sulfide fractions indicate a minor influence of mantle sulfides on the bulk Mo budget. The incorporation of little Mo into pyroxenes of the mantle rocks contrasts with Ce which is mainly controlled by clinopyroxene. This contrasting behavior suggests a higher incompatibility of Mo than Ce during mantle melting. Modelling polybaric melting of mantle peridotites indicates that melts formed at low degrees of partial melting (e.g., 5% melting, as in tholeiites and komatiites, leads to extraction of nearly the complete inventory of Mo and Ce into the melts and thus Mo/Ce of the melts should be representative of mean mantle source compositions, even if Mo and Ce show different bulk partition coefficients. Molybdenum contents of mantle rocks from the Ivrea Zone and the data on oceanic basalts and komatiites indicate that the depleted upper mantle has a low Mo content of" @default.
- W2890926434 created "2018-09-27" @default.
- W2890926434 creator A5008619305 @default.
- W2890926434 creator A5012433806 @default.
- W2890926434 date "2018-11-01" @default.
- W2890926434 modified "2023-10-12" @default.
- W2890926434 title "Molybdenum partitioning behavior and content in the depleted mantle: Insights from Balmuccia and Baldissero mantle tectonites (Ivrea Zone, Italian Alps)" @default.
- W2890926434 cites W1534749586 @default.
- W2890926434 cites W1828329906 @default.
- W2890926434 cites W1893068022 @default.
- W2890926434 cites W1969859799 @default.
- W2890926434 cites W1970269934 @default.
- W2890926434 cites W1977354924 @default.
- W2890926434 cites W1978218914 @default.
- W2890926434 cites W1980680282 @default.
- W2890926434 cites W1984274736 @default.
- W2890926434 cites W1986740297 @default.
- W2890926434 cites W1987907556 @default.
- W2890926434 cites W1988520903 @default.
- W2890926434 cites W1990804700 @default.
- W2890926434 cites W1995698047 @default.
- W2890926434 cites W1996000677 @default.
- W2890926434 cites W2002822830 @default.
- W2890926434 cites W2003142147 @default.
- W2890926434 cites W2006165768 @default.
- W2890926434 cites W2006349821 @default.
- W2890926434 cites W2007240079 @default.
- W2890926434 cites W2008073536 @default.
- W2890926434 cites W2008489622 @default.
- W2890926434 cites W2020120609 @default.
- W2890926434 cites W2023247228 @default.
- W2890926434 cites W2024448552 @default.
- W2890926434 cites W2025037750 @default.
- W2890926434 cites W2029667477 @default.
- W2890926434 cites W2034280294 @default.
- W2890926434 cites W2037836106 @default.
- W2890926434 cites W2040473112 @default.
- W2890926434 cites W2041145438 @default.
- W2890926434 cites W2051811384 @default.
- W2890926434 cites W2055097711 @default.
- W2890926434 cites W2056720091 @default.
- W2890926434 cites W2059506020 @default.
- W2890926434 cites W2059703220 @default.
- W2890926434 cites W2061576669 @default.
- W2890926434 cites W2067336738 @default.
- W2890926434 cites W2068277068 @default.
- W2890926434 cites W2069796880 @default.
- W2890926434 cites W2074037617 @default.
- W2890926434 cites W2082419764 @default.
- W2890926434 cites W2083591846 @default.
- W2890926434 cites W2087619837 @default.
- W2890926434 cites W2087673255 @default.
- W2890926434 cites W2091321105 @default.
- W2890926434 cites W2093630957 @default.
- W2890926434 cites W2093740880 @default.
- W2890926434 cites W2102062459 @default.
- W2890926434 cites W2109376143 @default.
- W2890926434 cites W2111302805 @default.
- W2890926434 cites W2118755672 @default.
- W2890926434 cites W2119438235 @default.
- W2890926434 cites W2121755657 @default.
- W2890926434 cites W2124644030 @default.
- W2890926434 cites W213548141 @default.
- W2890926434 cites W2138522501 @default.
- W2890926434 cites W2146549676 @default.
- W2890926434 cites W2150851598 @default.
- W2890926434 cites W2155400524 @default.
- W2890926434 cites W2155469993 @default.
- W2890926434 cites W2160744527 @default.
- W2890926434 cites W2164197774 @default.
- W2890926434 cites W2257554609 @default.
- W2890926434 cites W2291483011 @default.
- W2890926434 cites W2317415361 @default.
- W2890926434 cites W2481045437 @default.
- W2890926434 cites W2554972352 @default.
- W2890926434 cites W2607969859 @default.
- W2890926434 cites W2618369413 @default.
- W2890926434 cites W2741085301 @default.
- W2890926434 cites W2812354334 @default.
- W2890926434 cites W2887798483 @default.
- W2890926434 cites W397299577 @default.
- W2890926434 doi "https://doi.org/10.1016/j.chemgeo.2018.09.023" @default.
- W2890926434 hasPublicationYear "2018" @default.
- W2890926434 type Work @default.
- W2890926434 sameAs 2890926434 @default.
- W2890926434 citedByCount "9" @default.
- W2890926434 countsByYear W28909264342019 @default.
- W2890926434 countsByYear W28909264342020 @default.
- W2890926434 countsByYear W28909264342021 @default.
- W2890926434 countsByYear W28909264342022 @default.
- W2890926434 countsByYear W28909264342023 @default.
- W2890926434 crossrefType "journal-article" @default.
- W2890926434 hasAuthorship W2890926434A5008619305 @default.
- W2890926434 hasAuthorship W2890926434A5012433806 @default.
- W2890926434 hasConcept C127313418 @default.
- W2890926434 hasConcept C139498673 @default.
- W2890926434 hasConcept C165205528 @default.
- W2890926434 hasConcept C17409809 @default.