Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890932897> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W2890932897 abstract "The increasing digitization of political speech has opened the door to studying a new dimension of political behavior using text analysis. This work investigates the value of word-level statistical data from the US Congressional Record--which contains the full text of all speeches made in the US Congress--for studying the ideological positions and behavior of senators. Applying machine learning techniques, we use this data to automatically classify senators according to party, obtaining accuracy in the 70-95% range depending on the specific method used. We also show that using text to predict DW-NOMINATE scores, a common proxy for ideology, does not improve upon these already-successful results. This classification deteriorates when applied to text from sessions of Congress that are four or more years removed from the training set, pointing to a need on the part of voters to dynamically update the heuristics they use to evaluate party based on political speech. Text-based predictions are less accurate than those based on voting behavior, supporting the theory that roll-call votes represent greater commitment on the part of politicians and are thus a more accurate reflection of their ideological preferences. However, the overall success of the machine learning approaches studied here demonstrates that political speeches are highly predictive of partisan affiliation. In addition to these findings, this work also introduces the computational tools and methods relevant to the use of political speech data." @default.
- W2890932897 created "2018-09-27" @default.
- W2890932897 creator A5027626636 @default.
- W2890932897 date "2018-09-03" @default.
- W2890932897 modified "2023-09-27" @default.
- W2890932897 title "Read My Lips: Using Automatic Text Analysis to Classify Politicians by Party and Ideology" @default.
- W2890932897 cites W2103453949 @default.
- W2890932897 cites W2125837162 @default.
- W2890932897 cites W2319274039 @default.
- W2890932897 cites W2332626639 @default.
- W2890932897 hasPublicationYear "2018" @default.
- W2890932897 type Work @default.
- W2890932897 sameAs 2890932897 @default.
- W2890932897 citedByCount "0" @default.
- W2890932897 crossrefType "posted-content" @default.
- W2890932897 hasAuthorship W2890932897A5027626636 @default.
- W2890932897 hasConcept C111919701 @default.
- W2890932897 hasConcept C119857082 @default.
- W2890932897 hasConcept C127705205 @default.
- W2890932897 hasConcept C140367253 @default.
- W2890932897 hasConcept C154945302 @default.
- W2890932897 hasConcept C158071213 @default.
- W2890932897 hasConcept C177324205 @default.
- W2890932897 hasConcept C17744445 @default.
- W2890932897 hasConcept C199539241 @default.
- W2890932897 hasConcept C204321447 @default.
- W2890932897 hasConcept C2780148112 @default.
- W2890932897 hasConcept C41008148 @default.
- W2890932897 hasConcept C520049643 @default.
- W2890932897 hasConcept C66402592 @default.
- W2890932897 hasConcept C94625758 @default.
- W2890932897 hasConceptScore W2890932897C111919701 @default.
- W2890932897 hasConceptScore W2890932897C119857082 @default.
- W2890932897 hasConceptScore W2890932897C127705205 @default.
- W2890932897 hasConceptScore W2890932897C140367253 @default.
- W2890932897 hasConceptScore W2890932897C154945302 @default.
- W2890932897 hasConceptScore W2890932897C158071213 @default.
- W2890932897 hasConceptScore W2890932897C177324205 @default.
- W2890932897 hasConceptScore W2890932897C17744445 @default.
- W2890932897 hasConceptScore W2890932897C199539241 @default.
- W2890932897 hasConceptScore W2890932897C204321447 @default.
- W2890932897 hasConceptScore W2890932897C2780148112 @default.
- W2890932897 hasConceptScore W2890932897C41008148 @default.
- W2890932897 hasConceptScore W2890932897C520049643 @default.
- W2890932897 hasConceptScore W2890932897C66402592 @default.
- W2890932897 hasConceptScore W2890932897C94625758 @default.
- W2890932897 hasLocation W28909328971 @default.
- W2890932897 hasOpenAccess W2890932897 @default.
- W2890932897 hasPrimaryLocation W28909328971 @default.
- W2890932897 hasRelatedWork W1997669826 @default.
- W2890932897 hasRelatedWork W2062794497 @default.
- W2890932897 hasRelatedWork W2143308489 @default.
- W2890932897 hasRelatedWork W2294240362 @default.
- W2890932897 hasRelatedWork W2523179702 @default.
- W2890932897 hasRelatedWork W2523444173 @default.
- W2890932897 hasRelatedWork W2551261990 @default.
- W2890932897 hasRelatedWork W2559017104 @default.
- W2890932897 hasRelatedWork W2809234980 @default.
- W2890932897 hasRelatedWork W2900938513 @default.
- W2890932897 hasRelatedWork W2913122043 @default.
- W2890932897 hasRelatedWork W2953088889 @default.
- W2890932897 hasRelatedWork W2966389627 @default.
- W2890932897 hasRelatedWork W2978632630 @default.
- W2890932897 hasRelatedWork W2998900136 @default.
- W2890932897 hasRelatedWork W3006872574 @default.
- W2890932897 hasRelatedWork W3021355601 @default.
- W2890932897 hasRelatedWork W3122593363 @default.
- W2890932897 hasRelatedWork W2182868634 @default.
- W2890932897 hasRelatedWork W2395236527 @default.
- W2890932897 isParatext "false" @default.
- W2890932897 isRetracted "false" @default.
- W2890932897 magId "2890932897" @default.
- W2890932897 workType "article" @default.