Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890933310> ?p ?o ?g. }
- W2890933310 endingPage "1413" @default.
- W2890933310 startingPage "1413" @default.
- W2890933310 abstract "Accurate mapping of date palm trees is essential for their sustainable management, yield estimation, and environmental studies. In this study, we integrated geographic object-based image analysis, class-specific accuracy measures, fractional factorial design, metaheuristic feature-selection technique, and rule-based classification to detect and map date palm trees from very-high-spatial-resolution (VHSR) aerial images of two study areas. First, multiresolution segmentation was optimized through the synergy of the F1-score accuracy measure and the robust Taguchi design. Second, ant colony optimization (ACO) was adopted to select the most significant features. Out of 31 features, only 12 significant color invariants and textural features were selected. Third, based on the selected features, the rule-based classification with the aid of a decision tree algorithm was applied to extract date palm trees. The proposed methodology was developed on a subset of the first study area, and ultimately applied to the second study area to investigate its efficiency and transferability. To evaluate the proposed classification scheme, various supervised object-based algorithms, namely random forest (RF), support vector machine (SVM), and k-nearest neighbor (k-NN), were applied to the first study area. The result of image segmentation optimization demonstrated that segmentation optimization based on an integrated F1-score class-specific accuracy measure and Taguchi statistical design showed improvement compared with objective function, along with the Taguchi design. Moreover, the result of the feature selection by ACO outperformed, with almost 88% overall accuracy, several feature-selection techniques, such as chi-square, correlation-based feature selection, gain ratio, information gain, support vector machine, and principal component analysis. The integrated framework for palm tree detection outperformed RF, SVM, and k-NN classification algorithms with an overall accuracy of 91.88% and 87.03%, date palm class-specific accuracies of 0.91 and 0.89, and kappa coefficients of 0.90 and 0.85 for the first and second study areas, respectively. The proposed integrated methodology demonstrated a highly efficient and promising tool to detect and map date palm trees from VHSR aerial images." @default.
- W2890933310 created "2018-09-27" @default.
- W2890933310 creator A5021086706 @default.
- W2890933310 creator A5050285762 @default.
- W2890933310 creator A5080155587 @default.
- W2890933310 creator A5083025638 @default.
- W2890933310 date "2018-09-05" @default.
- W2890933310 modified "2023-10-01" @default.
- W2890933310 title "Image Segmentation Parameter Selection and Ant Colony Optimization for Date Palm Tree Detection and Mapping from Very-High-Spatial-Resolution Aerial Imagery" @default.
- W2890933310 cites W1967413121 @default.
- W2890933310 cites W1967549979 @default.
- W2890933310 cites W1967769689 @default.
- W2890933310 cites W1974981350 @default.
- W2890933310 cites W1981755063 @default.
- W2890933310 cites W1986504269 @default.
- W2890933310 cites W1995280601 @default.
- W2890933310 cites W1997305839 @default.
- W2890933310 cites W1998351672 @default.
- W2890933310 cites W1998698620 @default.
- W2890933310 cites W2002568643 @default.
- W2890933310 cites W2005156666 @default.
- W2890933310 cites W2008043556 @default.
- W2890933310 cites W2008666786 @default.
- W2890933310 cites W2015497137 @default.
- W2890933310 cites W2030536206 @default.
- W2890933310 cites W2038125062 @default.
- W2890933310 cites W2044465660 @default.
- W2890933310 cites W2045804185 @default.
- W2890933310 cites W2054927102 @default.
- W2890933310 cites W2058132610 @default.
- W2890933310 cites W2059435031 @default.
- W2890933310 cites W2063587308 @default.
- W2890933310 cites W2064354376 @default.
- W2890933310 cites W2072289174 @default.
- W2890933310 cites W2075046504 @default.
- W2890933310 cites W2076347053 @default.
- W2890933310 cites W2092572597 @default.
- W2890933310 cites W2098596049 @default.
- W2890933310 cites W2111256709 @default.
- W2890933310 cites W2122282653 @default.
- W2890933310 cites W2129826572 @default.
- W2890933310 cites W2141166512 @default.
- W2890933310 cites W2142710676 @default.
- W2890933310 cites W2168548458 @default.
- W2890933310 cites W2171211995 @default.
- W2890933310 cites W2188360170 @default.
- W2890933310 cites W2206762869 @default.
- W2890933310 cites W2261059368 @default.
- W2890933310 cites W2288228418 @default.
- W2890933310 cites W2422834212 @default.
- W2890933310 cites W2470118601 @default.
- W2890933310 cites W2520261016 @default.
- W2890933310 cites W2545127240 @default.
- W2890933310 cites W2546440481 @default.
- W2890933310 cites W2567438483 @default.
- W2890933310 cites W2572947224 @default.
- W2890933310 cites W2574423202 @default.
- W2890933310 cites W2586954532 @default.
- W2890933310 cites W2587566571 @default.
- W2890933310 cites W2600004689 @default.
- W2890933310 cites W2601965012 @default.
- W2890933310 cites W2602438080 @default.
- W2890933310 cites W2614573445 @default.
- W2890933310 cites W2648242067 @default.
- W2890933310 cites W2735810309 @default.
- W2890933310 cites W2746203310 @default.
- W2890933310 cites W2761211808 @default.
- W2890933310 cites W2770654566 @default.
- W2890933310 cites W2774220749 @default.
- W2890933310 cites W2782934949 @default.
- W2890933310 cites W2783707612 @default.
- W2890933310 cites W2784301945 @default.
- W2890933310 cites W2790636941 @default.
- W2890933310 cites W2791373126 @default.
- W2890933310 cites W2793585173 @default.
- W2890933310 cites W2799777740 @default.
- W2890933310 cites W4239160967 @default.
- W2890933310 doi "https://doi.org/10.3390/rs10091413" @default.
- W2890933310 hasPublicationYear "2018" @default.
- W2890933310 type Work @default.
- W2890933310 sameAs 2890933310 @default.
- W2890933310 citedByCount "27" @default.
- W2890933310 countsByYear W28909333102019 @default.
- W2890933310 countsByYear W28909333102020 @default.
- W2890933310 countsByYear W28909333102021 @default.
- W2890933310 countsByYear W28909333102022 @default.
- W2890933310 countsByYear W28909333102023 @default.
- W2890933310 crossrefType "journal-article" @default.
- W2890933310 hasAuthorship W2890933310A5021086706 @default.
- W2890933310 hasAuthorship W2890933310A5050285762 @default.
- W2890933310 hasAuthorship W2890933310A5080155587 @default.
- W2890933310 hasAuthorship W2890933310A5083025638 @default.
- W2890933310 hasBestOaLocation W28909333101 @default.
- W2890933310 hasConcept C119857082 @default.
- W2890933310 hasConcept C12267149 @default.
- W2890933310 hasConcept C124101348 @default.
- W2890933310 hasConcept C124504099 @default.
- W2890933310 hasConcept C138885662 @default.