Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890934745> ?p ?o ?g. }
- W2890934745 endingPage "276" @default.
- W2890934745 startingPage "264" @default.
- W2890934745 abstract "This paper presents the entropy generation analysis and optimisation of typical shell-and-tube heat exchanger in the preheat train of crude oil distillation unit. The implication of entropy minimisation on energy consumption associated with design of heat exchanger was studied. The developed optimisation model was solved by employing the firefly algorithm. A number of constraints were applied with thirteen decision variables. The ε-NTU method and Delaware method were used for the heat exchanger design. Four cases were considered for each of two selected samples and were categorised under two studies. Total entropy generation rates for all the four cases considered were almost the same, and the dominant irreversibility distribution is by heat transfer. However, the sharp decrease in entropy generation due to fluid friction caused a great reduction in pumping power in the range of 51.4–82.1% and 54.8–92.2% for the two studies, respectively. The results of sensitivity study on the decision variables showed sharp reduction in entropy generation rate and increased pumping power as the mass flow rate increases for all the variables. Also, the choices of the tube diameter and tube number had greater impact on the changes in entropy generation rate and pumping power." @default.
- W2890934745 created "2018-09-27" @default.
- W2890934745 creator A5009378768 @default.
- W2890934745 creator A5027207612 @default.
- W2890934745 creator A5048696394 @default.
- W2890934745 creator A5055142879 @default.
- W2890934745 date "2018-12-01" @default.
- W2890934745 modified "2023-09-27" @default.
- W2890934745 title "Entropy generation minimisation of shell-and-tube heat exchanger in crude oil preheat train using firefly algorithm" @default.
- W2890934745 cites W1796577290 @default.
- W2890934745 cites W1970644673 @default.
- W2890934745 cites W1981965373 @default.
- W2890934745 cites W1987336322 @default.
- W2890934745 cites W1992208182 @default.
- W2890934745 cites W2008095581 @default.
- W2890934745 cites W2010506359 @default.
- W2890934745 cites W2032381787 @default.
- W2890934745 cites W2039057843 @default.
- W2890934745 cites W2040645621 @default.
- W2890934745 cites W2042779369 @default.
- W2890934745 cites W2044587647 @default.
- W2890934745 cites W2044645070 @default.
- W2890934745 cites W2054171900 @default.
- W2890934745 cites W2056736167 @default.
- W2890934745 cites W2057836632 @default.
- W2890934745 cites W2062825668 @default.
- W2890934745 cites W2066263489 @default.
- W2890934745 cites W2071269335 @default.
- W2890934745 cites W2071454883 @default.
- W2890934745 cites W2089355983 @default.
- W2890934745 cites W2094502917 @default.
- W2890934745 cites W2150447796 @default.
- W2890934745 cites W2169792861 @default.
- W2890934745 cites W2171021655 @default.
- W2890934745 cites W2212020507 @default.
- W2890934745 cites W2226658350 @default.
- W2890934745 cites W2467487576 @default.
- W2890934745 cites W2470024567 @default.
- W2890934745 cites W2490317101 @default.
- W2890934745 cites W2519429102 @default.
- W2890934745 cites W2520005346 @default.
- W2890934745 cites W2576324142 @default.
- W2890934745 cites W2582810009 @default.
- W2890934745 cites W2586702465 @default.
- W2890934745 cites W2595414748 @default.
- W2890934745 cites W2606382887 @default.
- W2890934745 cites W2609285363 @default.
- W2890934745 cites W2612921532 @default.
- W2890934745 cites W2613969616 @default.
- W2890934745 cites W2615016734 @default.
- W2890934745 cites W2628069955 @default.
- W2890934745 cites W2726506818 @default.
- W2890934745 cites W2730698562 @default.
- W2890934745 cites W2761010719 @default.
- W2890934745 cites W2761980549 @default.
- W2890934745 cites W2765876825 @default.
- W2890934745 cites W2783388859 @default.
- W2890934745 cites W82459767 @default.
- W2890934745 cites W969110184 @default.
- W2890934745 doi "https://doi.org/10.1016/j.applthermaleng.2018.09.045" @default.
- W2890934745 hasPublicationYear "2018" @default.
- W2890934745 type Work @default.
- W2890934745 sameAs 2890934745 @default.
- W2890934745 citedByCount "18" @default.
- W2890934745 countsByYear W28909347452019 @default.
- W2890934745 countsByYear W28909347452020 @default.
- W2890934745 countsByYear W28909347452021 @default.
- W2890934745 countsByYear W28909347452022 @default.
- W2890934745 countsByYear W28909347452023 @default.
- W2890934745 crossrefType "journal-article" @default.
- W2890934745 hasAuthorship W2890934745A5009378768 @default.
- W2890934745 hasAuthorship W2890934745A5027207612 @default.
- W2890934745 hasAuthorship W2890934745A5048696394 @default.
- W2890934745 hasAuthorship W2890934745A5055142879 @default.
- W2890934745 hasConcept C106301342 @default.
- W2890934745 hasConcept C107706546 @default.
- W2890934745 hasConcept C121332964 @default.
- W2890934745 hasConcept C126255220 @default.
- W2890934745 hasConcept C127413603 @default.
- W2890934745 hasConcept C154982244 @default.
- W2890934745 hasConcept C172120300 @default.
- W2890934745 hasConcept C192562407 @default.
- W2890934745 hasConcept C205318045 @default.
- W2890934745 hasConcept C33923547 @default.
- W2890934745 hasConcept C50517652 @default.
- W2890934745 hasConcept C57879066 @default.
- W2890934745 hasConcept C75892298 @default.
- W2890934745 hasConcept C85617194 @default.
- W2890934745 hasConcept C97355855 @default.
- W2890934745 hasConceptScore W2890934745C106301342 @default.
- W2890934745 hasConceptScore W2890934745C107706546 @default.
- W2890934745 hasConceptScore W2890934745C121332964 @default.
- W2890934745 hasConceptScore W2890934745C126255220 @default.
- W2890934745 hasConceptScore W2890934745C127413603 @default.
- W2890934745 hasConceptScore W2890934745C154982244 @default.
- W2890934745 hasConceptScore W2890934745C172120300 @default.
- W2890934745 hasConceptScore W2890934745C192562407 @default.
- W2890934745 hasConceptScore W2890934745C205318045 @default.