Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890936063> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W2890936063 endingPage "893" @default.
- W2890936063 startingPage "885" @default.
- W2890936063 abstract "Low-quality medical images may influence the accuracy of the machine learning process.This study was undertaken to compare accuracy of medical image classification among machine learning methods, as classification is a basic aspect of clinical image inspection.Three types of machine learning methods were used, which include Support Vector Machine (SVM), Artificial Neural Network (ANN), and Convolution Neural Network (CNN). To investigate changes in accuracy related to image quality, we constructed a single dataset using two different file formats of DICOM (Digital Imaging and Communications in Medicine) and JPEG (Joint Photographic Experts Group).The JPEG format contains less color information and data capacity than the DICOM format. CNN classification was accurate for both datasets, whereas SVM and ANN accuracy decreased with the loss of data from DICOM to JPEG formats.CNN is more accurate than conventional machine learning methods that utilize the manual feature extraction." @default.
- W2890936063 created "2018-09-27" @default.
- W2890936063 creator A5005299998 @default.
- W2890936063 creator A5014582936 @default.
- W2890936063 creator A5028911630 @default.
- W2890936063 creator A5051569420 @default.
- W2890936063 creator A5058097679 @default.
- W2890936063 creator A5060922717 @default.
- W2890936063 creator A5068867473 @default.
- W2890936063 creator A5089056330 @default.
- W2890936063 date "2018-12-27" @default.
- W2890936063 modified "2023-10-15" @default.
- W2890936063 title "Comparison of medical image classification accuracy among three machine learning methods" @default.
- W2890936063 cites W2048405195 @default.
- W2890936063 cites W2253429366 @default.
- W2890936063 cites W2346062110 @default.
- W2890936063 cites W2560725027 @default.
- W2890936063 cites W2763914801 @default.
- W2890936063 cites W2769713325 @default.
- W2890936063 cites W2804692111 @default.
- W2890936063 cites W3105902188 @default.
- W2890936063 doi "https://doi.org/10.3233/xst-18386" @default.
- W2890936063 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30223423" @default.
- W2890936063 hasPublicationYear "2018" @default.
- W2890936063 type Work @default.
- W2890936063 sameAs 2890936063 @default.
- W2890936063 citedByCount "18" @default.
- W2890936063 countsByYear W28909360632018 @default.
- W2890936063 countsByYear W28909360632020 @default.
- W2890936063 countsByYear W28909360632021 @default.
- W2890936063 countsByYear W28909360632022 @default.
- W2890936063 countsByYear W28909360632023 @default.
- W2890936063 crossrefType "journal-article" @default.
- W2890936063 hasAuthorship W2890936063A5005299998 @default.
- W2890936063 hasAuthorship W2890936063A5014582936 @default.
- W2890936063 hasAuthorship W2890936063A5028911630 @default.
- W2890936063 hasAuthorship W2890936063A5051569420 @default.
- W2890936063 hasAuthorship W2890936063A5058097679 @default.
- W2890936063 hasAuthorship W2890936063A5060922717 @default.
- W2890936063 hasAuthorship W2890936063A5068867473 @default.
- W2890936063 hasAuthorship W2890936063A5089056330 @default.
- W2890936063 hasConcept C115961682 @default.
- W2890936063 hasConcept C119857082 @default.
- W2890936063 hasConcept C12267149 @default.
- W2890936063 hasConcept C153180895 @default.
- W2890936063 hasConcept C154945302 @default.
- W2890936063 hasConcept C198751489 @default.
- W2890936063 hasConcept C31972630 @default.
- W2890936063 hasConcept C41008148 @default.
- W2890936063 hasConcept C50644808 @default.
- W2890936063 hasConcept C52622490 @default.
- W2890936063 hasConcept C65377053 @default.
- W2890936063 hasConcept C77331912 @default.
- W2890936063 hasConcept C81363708 @default.
- W2890936063 hasConceptScore W2890936063C115961682 @default.
- W2890936063 hasConceptScore W2890936063C119857082 @default.
- W2890936063 hasConceptScore W2890936063C12267149 @default.
- W2890936063 hasConceptScore W2890936063C153180895 @default.
- W2890936063 hasConceptScore W2890936063C154945302 @default.
- W2890936063 hasConceptScore W2890936063C198751489 @default.
- W2890936063 hasConceptScore W2890936063C31972630 @default.
- W2890936063 hasConceptScore W2890936063C41008148 @default.
- W2890936063 hasConceptScore W2890936063C50644808 @default.
- W2890936063 hasConceptScore W2890936063C52622490 @default.
- W2890936063 hasConceptScore W2890936063C65377053 @default.
- W2890936063 hasConceptScore W2890936063C77331912 @default.
- W2890936063 hasConceptScore W2890936063C81363708 @default.
- W2890936063 hasIssue "6" @default.
- W2890936063 hasLocation W28909360631 @default.
- W2890936063 hasLocation W28909360632 @default.
- W2890936063 hasOpenAccess W2890936063 @default.
- W2890936063 hasPrimaryLocation W28909360631 @default.
- W2890936063 hasRelatedWork W2059299633 @default.
- W2890936063 hasRelatedWork W2124109643 @default.
- W2890936063 hasRelatedWork W2126100045 @default.
- W2890936063 hasRelatedWork W2336974148 @default.
- W2890936063 hasRelatedWork W2381773606 @default.
- W2890936063 hasRelatedWork W2732542196 @default.
- W2890936063 hasRelatedWork W3081496756 @default.
- W2890936063 hasRelatedWork W3193301557 @default.
- W2890936063 hasRelatedWork W2187500075 @default.
- W2890936063 hasRelatedWork W2345184372 @default.
- W2890936063 hasVolume "26" @default.
- W2890936063 isParatext "false" @default.
- W2890936063 isRetracted "false" @default.
- W2890936063 magId "2890936063" @default.
- W2890936063 workType "article" @default.