Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890939342> ?p ?o ?g. }
- W2890939342 endingPage "473" @default.
- W2890939342 startingPage "449" @default.
- W2890939342 abstract "Turbulent-kinetic-energy (TKE) production $mathscr{P}_{k}=R_{12}(unicode[STIX]{x2202}U/unicode[STIX]{x2202}y)$ and TKE dissipation $mathscr{E}_{k}=unicode[STIX]{x1D708}langle (unicode[STIX]{x2202}u_{i}/x_{k})(unicode[STIX]{x2202}u_{i}/x_{k})rangle$ are important quantities in the understanding and modelling of turbulent wall-bounded flows. Here $U$ is the mean velocity in the streamwise direction, $u_{i}$ or $u,v,w$ are the velocity fluctuation in the streamwise $x$ - direction, wall-normal $y$ - direction, and spanwise $z$ -direction, respectively; $unicode[STIX]{x1D708}$ is the kinematic viscosity; $R_{12}=-langle uvrangle$ is the kinematic Reynolds shear stress. Angle brackets denote Reynolds averaging. This paper investigates the integral properties of TKE production and dissipation in turbulent wall-bounded flows, including turbulent channel flows, turbulent pipe flows and zero-pressure-gradient turbulent boundary layer flows (ZPG TBL). The main findings of this work are as follows. (i) The global integral of TKE production is predicted by the RD identity derived by Renard & Deck ( J. Fluid Mech. , vol. 790, 2016, pp. 339–367) as $int _{0}^{unicode[STIX]{x1D6FF}}mathscr{P}_{k},text{d}y=U_{b}u_{unicode[STIX]{x1D70F}}^{2}-int _{0}^{unicode[STIX]{x1D6FF}}unicode[STIX]{x1D708}(unicode[STIX]{x2202}U/unicode[STIX]{x2202}y)^{2},text{d}y$ for channel flows, where $U_{b}$ is the bulk mean velocity, $u_{unicode[STIX]{x1D70F}}$ is the friction velocity and $unicode[STIX]{x1D6FF}$ is the channel half-height. Using inner scaling, the identity for the global integral of the TKE production in channel flows is $int _{0}^{unicode[STIX]{x1D6FF}^{+}}mathscr{P}_{k}^{+}text{d}y^{+}=U_{b}^{+}-int _{0}^{unicode[STIX]{x1D6FF}^{+}}(unicode[STIX]{x2202}U^{+}/unicode[STIX]{x2202}y^{+})^{2},text{d}y^{+}$ . In the present work, superscript $+$ denotes inner scaling. At sufficiently high Reynolds number, the global integral of the TKE production in turbulent channel flows can be approximated as $int _{0}^{unicode[STIX]{x1D6FF}^{+}}mathscr{P}_{k}^{+},text{d}y^{+}approx U_{b}^{+}-9.13$ . (ii) At sufficiently high Reynolds number, the integrals of TKE production and dissipation are equally partitioned around the peak Reynolds shear stress location $y_{m}:,int _{0}^{y_{m}}mathscr{P}_{k},text{d}yapprox int _{y_{m}}^{unicode[STIX]{x1D6FF}}mathscr{P}_{k},text{d}y$ and $int _{0}^{y_{m}}mathscr{E}_{k},text{d}yapprox int _{y_{m}}^{unicode[STIX]{x1D6FF}}mathscr{E}_{k},text{d}y$ . (iii) The integral of the TKE production ${mathcal{I}}_{mathscr{P}_{k}}(y)=int _{0}^{y}mathscr{P}_{k},text{d}y$ and the integral of the TKE dissipation ${mathcal{I}}_{mathscr{E}_{k}}(y)=int _{0}^{y}mathscr{E}_{k},text{d}y$ exhibit a logarithmic-like layer similar to that of the mean streamwise velocity as, for example, ${mathcal{I}}_{mathscr{P}_{k}}^{+}(y^{+})approx (1/unicode[STIX]{x1D705})ln (y^{+})+C_{mathscr{P}}$ and ${mathcal{I}}_{mathscr{E}_{k}}^{+}(y^{+})approx (1/unicode[STIX]{x1D705})ln (y^{+})+C_{mathscr{E}}$ , where $unicode[STIX]{x1D705}$ is the von Kármán constant, $C_{mathscr{P}}$ and $C_{mathscr{E}}$ are addititve constants. The logarithmic-like scaling of the global integral of TKE production and dissipation, the equal partition of the integrals of TKE production and dissipation around the peak Reynolds shear stress location $y_{m}$ and the logarithmic-like layer in the integral of TKE production and dissipation are intimately related. It is known that the peak Reynolds shear stress location $y_{m}$ scales with a meso-length scale $l_{m}=sqrt{unicode[STIX]{x1D6FF}unicode[STIX]{x1D708}/u_{unicode[STIX]{x1D70F}}}$ . The equal partition of the integral of the TKE production and dissipation around $y_{m}$ underlines the important role of the meso-length scale $l_{m}$ in the dynamics of turbulent wall-bounded flows." @default.
- W2890939342 created "2018-09-27" @default.
- W2890939342 creator A5047953113 @default.
- W2890939342 date "2018-09-10" @default.
- W2890939342 modified "2023-09-29" @default.
- W2890939342 title "Integral properties of turbulent-kinetic-energy production and dissipation in turbulent wall-bounded flows" @default.
- W2890939342 cites W1968895792 @default.
- W2890939342 cites W1969170514 @default.
- W2890939342 cites W1970512329 @default.
- W2890939342 cites W1971466510 @default.
- W2890939342 cites W1975141524 @default.
- W2890939342 cites W1977575669 @default.
- W2890939342 cites W1979252406 @default.
- W2890939342 cites W1988916147 @default.
- W2890939342 cites W1992742391 @default.
- W2890939342 cites W1999342449 @default.
- W2890939342 cites W2000406404 @default.
- W2890939342 cites W2013454735 @default.
- W2890939342 cites W2017699595 @default.
- W2890939342 cites W2020253680 @default.
- W2890939342 cites W2023230607 @default.
- W2890939342 cites W2026314041 @default.
- W2890939342 cites W2027101647 @default.
- W2890939342 cites W2029108282 @default.
- W2890939342 cites W2041951585 @default.
- W2890939342 cites W2046330300 @default.
- W2890939342 cites W2048225889 @default.
- W2890939342 cites W2056984989 @default.
- W2890939342 cites W2062100823 @default.
- W2890939342 cites W2074295499 @default.
- W2890939342 cites W2079475896 @default.
- W2890939342 cites W2081222491 @default.
- W2890939342 cites W2084548161 @default.
- W2890939342 cites W2087396040 @default.
- W2890939342 cites W2109059158 @default.
- W2890939342 cites W2115804172 @default.
- W2890939342 cites W2118191351 @default.
- W2890939342 cites W2123497737 @default.
- W2890939342 cites W2138161720 @default.
- W2890939342 cites W2155155203 @default.
- W2890939342 cites W2155665955 @default.
- W2890939342 cites W2156242059 @default.
- W2890939342 cites W2158296088 @default.
- W2890939342 cites W2160903673 @default.
- W2890939342 cites W2164742615 @default.
- W2890939342 cites W2164923079 @default.
- W2890939342 cites W2171651455 @default.
- W2890939342 cites W2240077635 @default.
- W2890939342 cites W2265023020 @default.
- W2890939342 cites W2265834670 @default.
- W2890939342 cites W2329539446 @default.
- W2890939342 cites W2411361512 @default.
- W2890939342 cites W2758658036 @default.
- W2890939342 cites W2766795914 @default.
- W2890939342 cites W2802768264 @default.
- W2890939342 cites W3099832420 @default.
- W2890939342 cites W3149791203 @default.
- W2890939342 doi "https://doi.org/10.1017/jfm.2018.578" @default.
- W2890939342 hasPublicationYear "2018" @default.
- W2890939342 type Work @default.
- W2890939342 sameAs 2890939342 @default.
- W2890939342 citedByCount "23" @default.
- W2890939342 countsByYear W28909393422019 @default.
- W2890939342 countsByYear W28909393422020 @default.
- W2890939342 countsByYear W28909393422021 @default.
- W2890939342 countsByYear W28909393422022 @default.
- W2890939342 countsByYear W28909393422023 @default.
- W2890939342 crossrefType "journal-article" @default.
- W2890939342 hasAuthorship W2890939342A5047953113 @default.
- W2890939342 hasConcept C121332964 @default.
- W2890939342 hasConcept C135402231 @default.
- W2890939342 hasConcept C15476950 @default.
- W2890939342 hasConcept C196558001 @default.
- W2890939342 hasConcept C204321447 @default.
- W2890939342 hasConcept C2524010 @default.
- W2890939342 hasConcept C33923547 @default.
- W2890939342 hasConcept C41008148 @default.
- W2890939342 hasConcept C500551929 @default.
- W2890939342 hasConcept C57879066 @default.
- W2890939342 hasConcept C62520636 @default.
- W2890939342 hasConceptScore W2890939342C121332964 @default.
- W2890939342 hasConceptScore W2890939342C135402231 @default.
- W2890939342 hasConceptScore W2890939342C15476950 @default.
- W2890939342 hasConceptScore W2890939342C196558001 @default.
- W2890939342 hasConceptScore W2890939342C204321447 @default.
- W2890939342 hasConceptScore W2890939342C2524010 @default.
- W2890939342 hasConceptScore W2890939342C33923547 @default.
- W2890939342 hasConceptScore W2890939342C41008148 @default.
- W2890939342 hasConceptScore W2890939342C500551929 @default.
- W2890939342 hasConceptScore W2890939342C57879066 @default.
- W2890939342 hasConceptScore W2890939342C62520636 @default.
- W2890939342 hasLocation W28909393421 @default.
- W2890939342 hasOpenAccess W2890939342 @default.
- W2890939342 hasPrimaryLocation W28909393421 @default.
- W2890939342 hasRelatedWork W2020888982 @default.
- W2890939342 hasRelatedWork W2021718291 @default.
- W2890939342 hasRelatedWork W2050892155 @default.
- W2890939342 hasRelatedWork W2322739790 @default.