Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890940848> ?p ?o ?g. }
Showing items 1 to 68 of
68
with 100 items per page.
- W2890940848 endingPage "202" @default.
- W2890940848 startingPage "169" @default.
- W2890940848 abstract "Abstract The centre-pieces of this chapter are the Lax–Milgram Theorem and the existence of weak or variational solutions to problems involving sesquilinear forms. An important application is to Kato’s First Representation Theorem, which associates a unique m-sectorial operator with a closed, densely defined sesquilinear form, thus extending the Friedrichs extension for a lower bounded symmetric operator. Stampacchia’s generalization of the Lax–Milgram Theorem to variational inequalities is also discussed." @default.
- W2890940848 created "2018-09-27" @default.
- W2890940848 creator A5024948477 @default.
- W2890940848 creator A5028035880 @default.
- W2890940848 date "2018-05-23" @default.
- W2890940848 modified "2023-10-05" @default.
- W2890940848 title "Sesquilinear Forms in Hilbert Spaces" @default.
- W2890940848 cites W181439177 @default.
- W2890940848 cites W19099382 @default.
- W2890940848 cites W1953210617 @default.
- W2890940848 cites W2986151310 @default.
- W2890940848 doi "https://doi.org/10.1093/oso/9780198812050.003.0004" @default.
- W2890940848 hasPublicationYear "2018" @default.
- W2890940848 type Work @default.
- W2890940848 sameAs 2890940848 @default.
- W2890940848 citedByCount "0" @default.
- W2890940848 crossrefType "book-chapter" @default.
- W2890940848 hasAuthorship W2890940848A5024948477 @default.
- W2890940848 hasAuthorship W2890940848A5028035880 @default.
- W2890940848 hasConcept C104317684 @default.
- W2890940848 hasConcept C134306372 @default.
- W2890940848 hasConcept C158448853 @default.
- W2890940848 hasConcept C161999928 @default.
- W2890940848 hasConcept C163353815 @default.
- W2890940848 hasConcept C17020691 @default.
- W2890940848 hasConcept C177148314 @default.
- W2890940848 hasConcept C185592680 @default.
- W2890940848 hasConcept C202444582 @default.
- W2890940848 hasConcept C33923547 @default.
- W2890940848 hasConcept C34388435 @default.
- W2890940848 hasConcept C55493867 @default.
- W2890940848 hasConcept C62799726 @default.
- W2890940848 hasConcept C86339819 @default.
- W2890940848 hasConcept C94940 @default.
- W2890940848 hasConceptScore W2890940848C104317684 @default.
- W2890940848 hasConceptScore W2890940848C134306372 @default.
- W2890940848 hasConceptScore W2890940848C158448853 @default.
- W2890940848 hasConceptScore W2890940848C161999928 @default.
- W2890940848 hasConceptScore W2890940848C163353815 @default.
- W2890940848 hasConceptScore W2890940848C17020691 @default.
- W2890940848 hasConceptScore W2890940848C177148314 @default.
- W2890940848 hasConceptScore W2890940848C185592680 @default.
- W2890940848 hasConceptScore W2890940848C202444582 @default.
- W2890940848 hasConceptScore W2890940848C33923547 @default.
- W2890940848 hasConceptScore W2890940848C34388435 @default.
- W2890940848 hasConceptScore W2890940848C55493867 @default.
- W2890940848 hasConceptScore W2890940848C62799726 @default.
- W2890940848 hasConceptScore W2890940848C86339819 @default.
- W2890940848 hasConceptScore W2890940848C94940 @default.
- W2890940848 hasLocation W28909408481 @default.
- W2890940848 hasOpenAccess W2890940848 @default.
- W2890940848 hasPrimaryLocation W28909408481 @default.
- W2890940848 hasRelatedWork W1482827353 @default.
- W2890940848 hasRelatedWork W1987269275 @default.
- W2890940848 hasRelatedWork W1991765628 @default.
- W2890940848 hasRelatedWork W2008180924 @default.
- W2890940848 hasRelatedWork W2027251766 @default.
- W2890940848 hasRelatedWork W2055132062 @default.
- W2890940848 hasRelatedWork W2121115887 @default.
- W2890940848 hasRelatedWork W3211227365 @default.
- W2890940848 hasRelatedWork W4280609406 @default.
- W2890940848 hasRelatedWork W4286860002 @default.
- W2890940848 isParatext "false" @default.
- W2890940848 isRetracted "false" @default.
- W2890940848 magId "2890940848" @default.
- W2890940848 workType "book-chapter" @default.