Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890943900> ?p ?o ?g. }
Showing items 1 to 48 of
48
with 100 items per page.
- W2890943900 abstract "Tweets classification or in general the classification of the social network's data is a recent field of scientific research, where researchers look for new methods to classify users data (tweets, Facebook's post...) into classes (positive, negative, neutral).This type of scientific research called sentiment analysis (SA) or opinion mining and it allows to extract the feelings, opinions or attitudes expressed in a tweet or a facebook post ...In this article, we describe how we can collect and store a large volume of data, which is in the form of tweets, in Hadoop Distributed File System (HDFS), and how we can classify these tweets using different classification methods, making a comparison between the well-known machine learning algorithms and a dictionary based-approach using the AFINN dictionary. The experimental results show that the AFINN dictionary outperforms the well-known machine learning algorithms." @default.
- W2890943900 created "2018-09-27" @default.
- W2890943900 creator A5011192704 @default.
- W2890943900 creator A5067532234 @default.
- W2890943900 creator A5088964736 @default.
- W2890943900 date "2018-04-25" @default.
- W2890943900 modified "2023-10-18" @default.
- W2890943900 title "Twitter Data Classification Using Big Data Technologies" @default.
- W2890943900 cites W2055527449 @default.
- W2890943900 cites W2563172398 @default.
- W2890943900 cites W2565436997 @default.
- W2890943900 cites W2751175086 @default.
- W2890943900 cites W2751196688 @default.
- W2890943900 doi "https://doi.org/10.1145/3230348.3230368" @default.
- W2890943900 hasPublicationYear "2018" @default.
- W2890943900 type Work @default.
- W2890943900 sameAs 2890943900 @default.
- W2890943900 citedByCount "1" @default.
- W2890943900 countsByYear W28909439002019 @default.
- W2890943900 crossrefType "proceedings-article" @default.
- W2890943900 hasAuthorship W2890943900A5011192704 @default.
- W2890943900 hasAuthorship W2890943900A5067532234 @default.
- W2890943900 hasAuthorship W2890943900A5088964736 @default.
- W2890943900 hasConcept C124101348 @default.
- W2890943900 hasConcept C2522767166 @default.
- W2890943900 hasConcept C41008148 @default.
- W2890943900 hasConcept C75684735 @default.
- W2890943900 hasConceptScore W2890943900C124101348 @default.
- W2890943900 hasConceptScore W2890943900C2522767166 @default.
- W2890943900 hasConceptScore W2890943900C41008148 @default.
- W2890943900 hasConceptScore W2890943900C75684735 @default.
- W2890943900 hasLocation W28909439001 @default.
- W2890943900 hasOpenAccess W2890943900 @default.
- W2890943900 hasPrimaryLocation W28909439001 @default.
- W2890943900 hasRelatedWork W1996408511 @default.
- W2890943900 hasRelatedWork W2577361510 @default.
- W2890943900 hasRelatedWork W2608950002 @default.
- W2890943900 hasRelatedWork W2617449561 @default.
- W2890943900 hasRelatedWork W280853923 @default.
- W2890943900 hasRelatedWork W2808989540 @default.
- W2890943900 hasRelatedWork W2906467684 @default.
- W2890943900 hasRelatedWork W3042274686 @default.
- W2890943900 hasRelatedWork W4233433221 @default.
- W2890943900 hasRelatedWork W2558600762 @default.
- W2890943900 isParatext "false" @default.
- W2890943900 isRetracted "false" @default.
- W2890943900 magId "2890943900" @default.
- W2890943900 workType "article" @default.