Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890945080> ?p ?o ?g. }
- W2890945080 endingPage "2724" @default.
- W2890945080 startingPage "2697" @default.
- W2890945080 abstract "The Douglas-Rachford algorithm is a classical and powerful splitting method for minimizing the sum of two convex functions and, more generally, finding a zero of the sum of two maximally monotone operators. Although this algorithm is well understood when the involved operators are monotone or strongly monotone, the convergence theory for weakly monotone settings is far from being complete. In this paper, we propose an adaptive Douglas-Rachford splitting algorithm for the sum of two operators, one of which is strongly monotone while the other one is weakly monotone. With appropriately chosen parameters, the algorithm converges globally to a fixed point from which we derive a solution of the problem. When one operator is Lipschitz continuous, we prove global linear convergence, which sharpens recent known results." @default.
- W2890945080 created "2018-09-27" @default.
- W2890945080 creator A5080867745 @default.
- W2890945080 creator A5087304949 @default.
- W2890945080 date "2019-01-01" @default.
- W2890945080 modified "2023-10-02" @default.
- W2890945080 title "Adaptive Douglas--Rachford Splitting Algorithm for the Sum of Two Operators" @default.
- W2890945080 cites W1549918636 @default.
- W2890945080 cites W1690193285 @default.
- W2890945080 cites W1825307613 @default.
- W2890945080 cites W1901524206 @default.
- W2890945080 cites W1967317714 @default.
- W2890945080 cites W1969274089 @default.
- W2890945080 cites W1991386640 @default.
- W2890945080 cites W2003372231 @default.
- W2890945080 cites W2019569173 @default.
- W2890945080 cites W2038497950 @default.
- W2890945080 cites W2042532613 @default.
- W2890945080 cites W2045079045 @default.
- W2890945080 cites W2056578325 @default.
- W2890945080 cites W2058532290 @default.
- W2890945080 cites W2142506503 @default.
- W2890945080 cites W2153719359 @default.
- W2890945080 cites W2166406271 @default.
- W2890945080 cites W2171505904 @default.
- W2890945080 cites W2724759674 @default.
- W2890945080 cites W2796899174 @default.
- W2890945080 cites W2800547241 @default.
- W2890945080 cites W2951407603 @default.
- W2890945080 cites W2962916293 @default.
- W2890945080 cites W2962964459 @default.
- W2890945080 cites W3098376775 @default.
- W2890945080 cites W3103639684 @default.
- W2890945080 cites W3104930806 @default.
- W2890945080 cites W3105858912 @default.
- W2890945080 cites W3123298964 @default.
- W2890945080 cites W865342791 @default.
- W2890945080 doi "https://doi.org/10.1137/18m121160x" @default.
- W2890945080 hasPublicationYear "2019" @default.
- W2890945080 type Work @default.
- W2890945080 sameAs 2890945080 @default.
- W2890945080 citedByCount "18" @default.
- W2890945080 countsByYear W28909450802020 @default.
- W2890945080 countsByYear W28909450802021 @default.
- W2890945080 countsByYear W28909450802022 @default.
- W2890945080 countsByYear W28909450802023 @default.
- W2890945080 crossrefType "journal-article" @default.
- W2890945080 hasAuthorship W2890945080A5080867745 @default.
- W2890945080 hasAuthorship W2890945080A5087304949 @default.
- W2890945080 hasBestOaLocation W28909450802 @default.
- W2890945080 hasConcept C104317684 @default.
- W2890945080 hasConcept C112680207 @default.
- W2890945080 hasConcept C11413529 @default.
- W2890945080 hasConcept C114614502 @default.
- W2890945080 hasConcept C118615104 @default.
- W2890945080 hasConcept C12715386 @default.
- W2890945080 hasConcept C134306372 @default.
- W2890945080 hasConcept C145446738 @default.
- W2890945080 hasConcept C158448853 @default.
- W2890945080 hasConcept C162324750 @default.
- W2890945080 hasConcept C17020691 @default.
- W2890945080 hasConcept C185592680 @default.
- W2890945080 hasConcept C202444582 @default.
- W2890945080 hasConcept C22324862 @default.
- W2890945080 hasConcept C2524010 @default.
- W2890945080 hasConcept C2777303404 @default.
- W2890945080 hasConcept C2834757 @default.
- W2890945080 hasConcept C28826006 @default.
- W2890945080 hasConcept C33923547 @default.
- W2890945080 hasConcept C50522688 @default.
- W2890945080 hasConcept C55493867 @default.
- W2890945080 hasConcept C61445026 @default.
- W2890945080 hasConcept C72169020 @default.
- W2890945080 hasConcept C86339819 @default.
- W2890945080 hasConceptScore W2890945080C104317684 @default.
- W2890945080 hasConceptScore W2890945080C112680207 @default.
- W2890945080 hasConceptScore W2890945080C11413529 @default.
- W2890945080 hasConceptScore W2890945080C114614502 @default.
- W2890945080 hasConceptScore W2890945080C118615104 @default.
- W2890945080 hasConceptScore W2890945080C12715386 @default.
- W2890945080 hasConceptScore W2890945080C134306372 @default.
- W2890945080 hasConceptScore W2890945080C145446738 @default.
- W2890945080 hasConceptScore W2890945080C158448853 @default.
- W2890945080 hasConceptScore W2890945080C162324750 @default.
- W2890945080 hasConceptScore W2890945080C17020691 @default.
- W2890945080 hasConceptScore W2890945080C185592680 @default.
- W2890945080 hasConceptScore W2890945080C202444582 @default.
- W2890945080 hasConceptScore W2890945080C22324862 @default.
- W2890945080 hasConceptScore W2890945080C2524010 @default.
- W2890945080 hasConceptScore W2890945080C2777303404 @default.
- W2890945080 hasConceptScore W2890945080C2834757 @default.
- W2890945080 hasConceptScore W2890945080C28826006 @default.
- W2890945080 hasConceptScore W2890945080C33923547 @default.
- W2890945080 hasConceptScore W2890945080C50522688 @default.
- W2890945080 hasConceptScore W2890945080C55493867 @default.
- W2890945080 hasConceptScore W2890945080C61445026 @default.
- W2890945080 hasConceptScore W2890945080C72169020 @default.
- W2890945080 hasConceptScore W2890945080C86339819 @default.