Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890945279> ?p ?o ?g. }
- W2890945279 endingPage "3324" @default.
- W2890945279 startingPage "3312" @default.
- W2890945279 abstract "In this paper, we propose a segmented principal component analysis (SPCA) and Gaussian pyramid decomposition based multiscale feature fusion method for the classification of hyperspectral images. First, considering the band-to-band cross correlations of objects, the SPCA method is utilized for the spectral dimension reduction of the hyperspectral image. Then, the dimension-reduced image is decomposed into several Gaussian pyramids to extract the multiscale features. Next, the SPCA method is performed again to compute the fused SPCA based Gaussian pyramid features (SPCA-GPs). Finally, the performance of the SPCA-GPs is evaluated using the support vector machine classifier. Experiments performed on three widely used hyperspectral images show that the proposed SPCA-GPs method outperforms several compared classification methods in terms of classification accuracies and computational cost." @default.
- W2890945279 created "2018-09-27" @default.
- W2890945279 creator A5002687387 @default.
- W2890945279 creator A5024679777 @default.
- W2890945279 creator A5057514965 @default.
- W2890945279 creator A5067097659 @default.
- W2890945279 date "2018-09-01" @default.
- W2890945279 modified "2023-10-14" @default.
- W2890945279 title "Gaussian Pyramid Based Multiscale Feature Fusion for Hyperspectral Image Classification" @default.
- W2890945279 cites W1535602073 @default.
- W2890945279 cites W1910604087 @default.
- W2890945279 cites W1928626817 @default.
- W2890945279 cites W1939429412 @default.
- W2890945279 cites W1985973695 @default.
- W2890945279 cites W2002392274 @default.
- W2890945279 cites W2018482939 @default.
- W2890945279 cites W2036485827 @default.
- W2890945279 cites W2053615857 @default.
- W2890945279 cites W2057688677 @default.
- W2890945279 cites W2070452328 @default.
- W2890945279 cites W2083983285 @default.
- W2890945279 cites W2085529604 @default.
- W2890945279 cites W2085625911 @default.
- W2890945279 cites W2087263574 @default.
- W2890945279 cites W2091690341 @default.
- W2890945279 cites W2097915756 @default.
- W2890945279 cites W2098057602 @default.
- W2890945279 cites W2101926110 @default.
- W2890945279 cites W2102584639 @default.
- W2890945279 cites W2103094532 @default.
- W2890945279 cites W2104896032 @default.
- W2890945279 cites W2105386417 @default.
- W2890945279 cites W2108597246 @default.
- W2890945279 cites W2109484841 @default.
- W2890945279 cites W2136251662 @default.
- W2890945279 cites W2144151128 @default.
- W2890945279 cites W2144188273 @default.
- W2890945279 cites W2151103935 @default.
- W2890945279 cites W2151288205 @default.
- W2890945279 cites W2152057649 @default.
- W2890945279 cites W2153635508 @default.
- W2890945279 cites W2159874418 @default.
- W2890945279 cites W2164769329 @default.
- W2890945279 cites W2166923144 @default.
- W2890945279 cites W2288228418 @default.
- W2890945279 cites W2315347323 @default.
- W2890945279 cites W2344173806 @default.
- W2890945279 cites W2345118402 @default.
- W2890945279 cites W2519956323 @default.
- W2890945279 cites W2565499339 @default.
- W2890945279 cites W2606870367 @default.
- W2890945279 cites W2609615231 @default.
- W2890945279 cites W2624340958 @default.
- W2890945279 cites W2740976805 @default.
- W2890945279 cites W2743618639 @default.
- W2890945279 cites W2754507318 @default.
- W2890945279 cites W2761917471 @default.
- W2890945279 cites W2768309288 @default.
- W2890945279 cites W3103856189 @default.
- W2890945279 doi "https://doi.org/10.1109/jstars.2018.2856741" @default.
- W2890945279 hasPublicationYear "2018" @default.
- W2890945279 type Work @default.
- W2890945279 sameAs 2890945279 @default.
- W2890945279 citedByCount "55" @default.
- W2890945279 countsByYear W28909452792019 @default.
- W2890945279 countsByYear W28909452792020 @default.
- W2890945279 countsByYear W28909452792021 @default.
- W2890945279 countsByYear W28909452792022 @default.
- W2890945279 countsByYear W28909452792023 @default.
- W2890945279 crossrefType "journal-article" @default.
- W2890945279 hasAuthorship W2890945279A5002687387 @default.
- W2890945279 hasAuthorship W2890945279A5024679777 @default.
- W2890945279 hasAuthorship W2890945279A5057514965 @default.
- W2890945279 hasAuthorship W2890945279A5067097659 @default.
- W2890945279 hasConcept C115961682 @default.
- W2890945279 hasConcept C121332964 @default.
- W2890945279 hasConcept C12267149 @default.
- W2890945279 hasConcept C138885662 @default.
- W2890945279 hasConcept C142575187 @default.
- W2890945279 hasConcept C153180895 @default.
- W2890945279 hasConcept C154945302 @default.
- W2890945279 hasConcept C159078339 @default.
- W2890945279 hasConcept C160633673 @default.
- W2890945279 hasConcept C163716315 @default.
- W2890945279 hasConcept C2524010 @default.
- W2890945279 hasConcept C27438332 @default.
- W2890945279 hasConcept C2776401178 @default.
- W2890945279 hasConcept C31972630 @default.
- W2890945279 hasConcept C33923547 @default.
- W2890945279 hasConcept C41008148 @default.
- W2890945279 hasConcept C41895202 @default.
- W2890945279 hasConcept C52622490 @default.
- W2890945279 hasConcept C62520636 @default.
- W2890945279 hasConcept C69744172 @default.
- W2890945279 hasConcept C70518039 @default.
- W2890945279 hasConcept C75294576 @default.
- W2890945279 hasConceptScore W2890945279C115961682 @default.
- W2890945279 hasConceptScore W2890945279C121332964 @default.