Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890953776> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W2890953776 endingPage "253" @default.
- W2890953776 startingPage "239" @default.
- W2890953776 abstract "Accurate assessment of the wireless coverage of a station is considered a key feature in 5G networks. Determining the reception coverage of transmitters becomes a complicated problem when there are interfering transmitters, and it becomes increasingly more complicated when the transmission powers of those transmitters are not uniform. In this paper, we compare different Machine Learning techniques that can be used to predict the wireless coverage maps. We consider the following Machine Learning methods: (1) Radial Basis Network; a type of Artificial Neural Network which typically uses Gaussian kernels, (2) an Artificial Neural Network which uses a sigmoid function as an activator,(3) A Multi-Layer Perceptron with two hidden layers, and (4) the K-Nearest-Neighbors technique. We show how it is possible to train the Neural Networks to generate coverage maps based on samples and we check the accuracy level of the learning process on a test set, using these four different learning techniques. The conclusion of our experiments is that if the sample points are randomly located, the Radial Basis Network and the Multi-Layer Perceptron perform better than the other methods. Thus, these models can be considered promising candidates for learning coverage maps, and can be used for efficient spectrum management within the framework of 5G cellular networks." @default.
- W2890953776 created "2018-09-27" @default.
- W2890953776 creator A5046834862 @default.
- W2890953776 creator A5047995605 @default.
- W2890953776 creator A5070817036 @default.
- W2890953776 creator A5089688680 @default.
- W2890953776 date "2018-12-01" @default.
- W2890953776 modified "2023-09-23" @default.
- W2890953776 title "Machine learning methods for SIR prediction in cellular networks" @default.
- W2890953776 cites W1618908395 @default.
- W2890953776 cites W1888440100 @default.
- W2890953776 cites W1961037478 @default.
- W2890953776 cites W1963581687 @default.
- W2890953776 cites W1979554434 @default.
- W2890953776 cites W1993573682 @default.
- W2890953776 cites W2022347495 @default.
- W2890953776 cites W2024676290 @default.
- W2890953776 cites W2060840175 @default.
- W2890953776 cites W2070560815 @default.
- W2890953776 cites W2091005538 @default.
- W2890953776 cites W2093540532 @default.
- W2890953776 cites W2101287405 @default.
- W2890953776 cites W2106660290 @default.
- W2890953776 cites W2127337238 @default.
- W2890953776 cites W2128010550 @default.
- W2890953776 cites W2133331265 @default.
- W2890953776 cites W2134686390 @default.
- W2890953776 cites W2164271287 @default.
- W2890953776 cites W2169061815 @default.
- W2890953776 cites W2518011345 @default.
- W2890953776 cites W2533192410 @default.
- W2890953776 cites W2734408173 @default.
- W2890953776 cites W2791634351 @default.
- W2890953776 cites W2792095278 @default.
- W2890953776 cites W2963634393 @default.
- W2890953776 doi "https://doi.org/10.1016/j.phycom.2018.08.005" @default.
- W2890953776 hasPublicationYear "2018" @default.
- W2890953776 type Work @default.
- W2890953776 sameAs 2890953776 @default.
- W2890953776 citedByCount "8" @default.
- W2890953776 countsByYear W28909537762020 @default.
- W2890953776 countsByYear W28909537762021 @default.
- W2890953776 countsByYear W28909537762022 @default.
- W2890953776 countsByYear W28909537762023 @default.
- W2890953776 crossrefType "journal-article" @default.
- W2890953776 hasAuthorship W2890953776A5046834862 @default.
- W2890953776 hasAuthorship W2890953776A5047995605 @default.
- W2890953776 hasAuthorship W2890953776A5070817036 @default.
- W2890953776 hasAuthorship W2890953776A5089688680 @default.
- W2890953776 hasConcept C108037233 @default.
- W2890953776 hasConcept C119857082 @default.
- W2890953776 hasConcept C154945302 @default.
- W2890953776 hasConcept C179717631 @default.
- W2890953776 hasConcept C41008148 @default.
- W2890953776 hasConcept C50644808 @default.
- W2890953776 hasConcept C555944384 @default.
- W2890953776 hasConcept C60908668 @default.
- W2890953776 hasConcept C76155785 @default.
- W2890953776 hasConcept C81388566 @default.
- W2890953776 hasConceptScore W2890953776C108037233 @default.
- W2890953776 hasConceptScore W2890953776C119857082 @default.
- W2890953776 hasConceptScore W2890953776C154945302 @default.
- W2890953776 hasConceptScore W2890953776C179717631 @default.
- W2890953776 hasConceptScore W2890953776C41008148 @default.
- W2890953776 hasConceptScore W2890953776C50644808 @default.
- W2890953776 hasConceptScore W2890953776C555944384 @default.
- W2890953776 hasConceptScore W2890953776C60908668 @default.
- W2890953776 hasConceptScore W2890953776C76155785 @default.
- W2890953776 hasConceptScore W2890953776C81388566 @default.
- W2890953776 hasLocation W28909537761 @default.
- W2890953776 hasOpenAccess W2890953776 @default.
- W2890953776 hasPrimaryLocation W28909537761 @default.
- W2890953776 hasRelatedWork W1493495162 @default.
- W2890953776 hasRelatedWork W1987886632 @default.
- W2890953776 hasRelatedWork W2471676342 @default.
- W2890953776 hasRelatedWork W3012292080 @default.
- W2890953776 hasRelatedWork W3019021103 @default.
- W2890953776 hasRelatedWork W3185179407 @default.
- W2890953776 hasRelatedWork W4220975826 @default.
- W2890953776 hasRelatedWork W4231994957 @default.
- W2890953776 hasRelatedWork W4280611221 @default.
- W2890953776 hasRelatedWork W4316082230 @default.
- W2890953776 hasVolume "31" @default.
- W2890953776 isParatext "false" @default.
- W2890953776 isRetracted "false" @default.
- W2890953776 magId "2890953776" @default.
- W2890953776 workType "article" @default.