Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890962147> ?p ?o ?g. }
- W2890962147 abstract "Non-orthogonal waveforms are groups of signals, which improve spectral efficiency but at the cost of interference. A recognized waveform, termed spectrally efficient frequency division multiplexing (SEFDM), which was a technique initially proposed for wireless systems, has been extensively studied in 60 GHz millimeter wave communications, optical access network design and long haul optical fiber transmission. Experimental demonstrations have shown the advantages of SEFDM in its bandwidth saving, data rate improvement, power efficiency improvement and transmission distance extension compared to conventional orthogonal communication techniques. However, the achieved success of SEFDM is at the cost of complex signal processing for the mitigation of the self-created inter carrier interference (ICI). Thus, a low complexity interference cancellation approach is in urgent need. Recently, deep learning has been applied in optical communication systems to compensate for linear and non-linear distortions in orthogonal frequency division multiplexing (OFDM) signals. The multiple processing layers of deep neural networks (DNN) can simplify signal processing models and can efficiently solve un-deterministic problems. However, there are no reports on the use of deep learning to deal with interference in non-orthogonal signals. DNN can learn complex interference features using backpropagation mechanism. This work will present our investigations on the performance improvement of interference cancellation for the non-orthogonal signal using various deep neural networks. Simulation results show that the interference within SEFDM signals can be mitigated efficiently via using properly designed neural networks. It also indicates a high correlation between neural networks and signal waveforms. It verifies that in order to achieve the optimal performance, all the neurons at each layer have to be connected. Partially connected neural networks cannot learn complete interference and therefore cannot recover signals efficiently. This work paves the way for the research of simplifying neural networks design via signal waveform optimization." @default.
- W2890962147 created "2018-09-27" @default.
- W2890962147 creator A5015945363 @default.
- W2890962147 creator A5046325978 @default.
- W2890962147 creator A5089494946 @default.
- W2890962147 date "2018-08-01" @default.
- W2890962147 modified "2023-10-17" @default.
- W2890962147 title "Deep Learning for Interference Cancellation in Non-Orthogonal Signal Based Optical Communication Systems" @default.
- W2890962147 cites W1964793896 @default.
- W2890962147 cites W1975683492 @default.
- W2890962147 cites W1976009470 @default.
- W2890962147 cites W1983303424 @default.
- W2890962147 cites W2000006997 @default.
- W2890962147 cites W2018789963 @default.
- W2890962147 cites W2022068707 @default.
- W2890962147 cites W2054692642 @default.
- W2890962147 cites W2068329841 @default.
- W2890962147 cites W2079729480 @default.
- W2890962147 cites W2093345453 @default.
- W2890962147 cites W2143779971 @default.
- W2890962147 cites W2176855938 @default.
- W2890962147 cites W2273675851 @default.
- W2890962147 cites W2294103580 @default.
- W2890962147 cites W2337568808 @default.
- W2890962147 cites W2368883064 @default.
- W2890962147 cites W2489777453 @default.
- W2890962147 cites W2521138521 @default.
- W2890962147 cites W2562947506 @default.
- W2890962147 cites W2734408173 @default.
- W2890962147 cites W2736068844 @default.
- W2890962147 cites W2760791709 @default.
- W2890962147 cites W2775750178 @default.
- W2890962147 cites W2963190722 @default.
- W2890962147 cites W2963889719 @default.
- W2890962147 cites W4205533812 @default.
- W2890962147 doi "https://doi.org/10.23919/piers.2018.8597902" @default.
- W2890962147 hasPublicationYear "2018" @default.
- W2890962147 type Work @default.
- W2890962147 sameAs 2890962147 @default.
- W2890962147 citedByCount "24" @default.
- W2890962147 countsByYear W28909621472018 @default.
- W2890962147 countsByYear W28909621472019 @default.
- W2890962147 countsByYear W28909621472020 @default.
- W2890962147 countsByYear W28909621472021 @default.
- W2890962147 countsByYear W28909621472022 @default.
- W2890962147 countsByYear W28909621472023 @default.
- W2890962147 crossrefType "proceedings-article" @default.
- W2890962147 hasAuthorship W2890962147A5015945363 @default.
- W2890962147 hasAuthorship W2890962147A5046325978 @default.
- W2890962147 hasAuthorship W2890962147A5089494946 @default.
- W2890962147 hasBestOaLocation W28909621472 @default.
- W2890962147 hasConcept C108583219 @default.
- W2890962147 hasConcept C127162648 @default.
- W2890962147 hasConcept C127413603 @default.
- W2890962147 hasConcept C137246740 @default.
- W2890962147 hasConcept C154945302 @default.
- W2890962147 hasConcept C19275194 @default.
- W2890962147 hasConcept C24326235 @default.
- W2890962147 hasConcept C2776257435 @default.
- W2890962147 hasConcept C32022120 @default.
- W2890962147 hasConcept C40409654 @default.
- W2890962147 hasConcept C41008148 @default.
- W2890962147 hasConcept C50644808 @default.
- W2890962147 hasConcept C54197355 @default.
- W2890962147 hasConcept C761482 @default.
- W2890962147 hasConcept C76155785 @default.
- W2890962147 hasConcept C83204339 @default.
- W2890962147 hasConcept C89061704 @default.
- W2890962147 hasConceptScore W2890962147C108583219 @default.
- W2890962147 hasConceptScore W2890962147C127162648 @default.
- W2890962147 hasConceptScore W2890962147C127413603 @default.
- W2890962147 hasConceptScore W2890962147C137246740 @default.
- W2890962147 hasConceptScore W2890962147C154945302 @default.
- W2890962147 hasConceptScore W2890962147C19275194 @default.
- W2890962147 hasConceptScore W2890962147C24326235 @default.
- W2890962147 hasConceptScore W2890962147C2776257435 @default.
- W2890962147 hasConceptScore W2890962147C32022120 @default.
- W2890962147 hasConceptScore W2890962147C40409654 @default.
- W2890962147 hasConceptScore W2890962147C41008148 @default.
- W2890962147 hasConceptScore W2890962147C50644808 @default.
- W2890962147 hasConceptScore W2890962147C54197355 @default.
- W2890962147 hasConceptScore W2890962147C761482 @default.
- W2890962147 hasConceptScore W2890962147C76155785 @default.
- W2890962147 hasConceptScore W2890962147C83204339 @default.
- W2890962147 hasConceptScore W2890962147C89061704 @default.
- W2890962147 hasLocation W28909621471 @default.
- W2890962147 hasLocation W28909621472 @default.
- W2890962147 hasLocation W28909621473 @default.
- W2890962147 hasLocation W28909621474 @default.
- W2890962147 hasOpenAccess W2890962147 @default.
- W2890962147 hasPrimaryLocation W28909621471 @default.
- W2890962147 hasRelatedWork W2024620835 @default.
- W2890962147 hasRelatedWork W2070451242 @default.
- W2890962147 hasRelatedWork W2517776947 @default.
- W2890962147 hasRelatedWork W2534428192 @default.
- W2890962147 hasRelatedWork W2742773947 @default.
- W2890962147 hasRelatedWork W2979631842 @default.
- W2890962147 hasRelatedWork W3081564544 @default.
- W2890962147 hasRelatedWork W3150933433 @default.
- W2890962147 hasRelatedWork W4229083865 @default.