Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890965385> ?p ?o ?g. }
- W2890965385 endingPage "1260" @default.
- W2890965385 startingPage "1260" @default.
- W2890965385 abstract "Future predictions of rainfall patterns in water-scarce regions are highly important for effective water resource management. Global circulation models (GCMs) are commonly used to make such predictions, but these models are highly complex and expensive. Furthermore, their results are associated with uncertainties and variations for different GCMs for various greenhouse gas emission scenarios. Data-driven models including artificial neural networks (ANNs) and adaptive neuro fuzzy inference systems (ANFISs) can be used to predict long-term future changes in rainfall and temperature, which is a challenging task and has limitations including the impact of greenhouse gas emission scenarios. Therefore, in this research, results from various GCMs and data-driven models were investigated to study the changes in temperature and rainfall of the Qassim region in Saudi Arabia. Thirty years of monthly climatic data were used for trend analysis using Mann–Kendall test and simulating the changes in temperature and rainfall using three GCMs (namely, HADCM3, INCM3, and MPEH5) for the A1B, A2, and B1 emissions scenarios as well as two data-driven models (ANN: feed-forward-multilayer, perceptron and ANFIS) without the impact of any emissions scenario. The results of the GCM were downscaled for the Qassim region using the Long Ashton Research Station’s Weather Generator 5.5. The coefficient of determination (R2) and Akaike’s information criterion (AIC) were used to compare the performance of the models. Results showed that the ANNs could outperform the ANFIS for predicting long-term future temperature and rainfall with acceptable accuracy. All nine GCM predictions (three models with three emissions scenarios) differed significantly from one another. Overall, the future predictions showed that the temperatures of the Qassim region will increase with a specified pattern from 2011 to 2099, whereas the changes in rainfall will differ over various spans of the future." @default.
- W2890965385 created "2018-09-27" @default.
- W2890965385 creator A5003482086 @default.
- W2890965385 creator A5037338329 @default.
- W2890965385 creator A5040633805 @default.
- W2890965385 creator A5049337180 @default.
- W2890965385 creator A5084164625 @default.
- W2890965385 date "2018-09-15" @default.
- W2890965385 modified "2023-09-24" @default.
- W2890965385 title "Future Predictions of Rainfall and Temperature Using GCM and ANN for Arid Regions: A Case Study for the Qassim Region, Saudi Arabia" @default.
- W2890965385 cites W108735484 @default.
- W2890965385 cites W1503650808 @default.
- W2890965385 cites W1620412248 @default.
- W2890965385 cites W1978583943 @default.
- W2890965385 cites W2049604804 @default.
- W2890965385 cites W2054653365 @default.
- W2890965385 cites W2061875761 @default.
- W2890965385 cites W2115295885 @default.
- W2890965385 cites W2135944841 @default.
- W2890965385 cites W2142593590 @default.
- W2890965385 cites W2153635508 @default.
- W2890965385 cites W2157543243 @default.
- W2890965385 cites W2175796840 @default.
- W2890965385 cites W2179553052 @default.
- W2890965385 cites W2185358055 @default.
- W2890965385 cites W2286991778 @default.
- W2890965385 cites W2316522976 @default.
- W2890965385 cites W2335339906 @default.
- W2890965385 cites W2538772333 @default.
- W2890965385 cites W2563118026 @default.
- W2890965385 cites W2568995074 @default.
- W2890965385 cites W2574416852 @default.
- W2890965385 cites W2580286772 @default.
- W2890965385 cites W2589543076 @default.
- W2890965385 cites W2609115812 @default.
- W2890965385 cites W2610778436 @default.
- W2890965385 cites W2681241615 @default.
- W2890965385 cites W2729991750 @default.
- W2890965385 cites W2749060026 @default.
- W2890965385 cites W2752200360 @default.
- W2890965385 cites W2768175275 @default.
- W2890965385 cites W2771269053 @default.
- W2890965385 cites W2771623589 @default.
- W2890965385 cites W2774522783 @default.
- W2890965385 cites W2776698980 @default.
- W2890965385 cites W2782004273 @default.
- W2890965385 cites W2782862215 @default.
- W2890965385 cites W2785361793 @default.
- W2890965385 cites W2785866869 @default.
- W2890965385 cites W2788895239 @default.
- W2890965385 cites W2789099423 @default.
- W2890965385 cites W2789665835 @default.
- W2890965385 cites W2791292631 @default.
- W2890965385 cites W2791530356 @default.
- W2890965385 cites W2792445302 @default.
- W2890965385 cites W2793820022 @default.
- W2890965385 cites W2798190736 @default.
- W2890965385 cites W2799918535 @default.
- W2890965385 cites W2802451079 @default.
- W2890965385 cites W2808387486 @default.
- W2890965385 cites W2887081296 @default.
- W2890965385 cites W3121530096 @default.
- W2890965385 cites W4252370996 @default.
- W2890965385 doi "https://doi.org/10.3390/w10091260" @default.
- W2890965385 hasPublicationYear "2018" @default.
- W2890965385 type Work @default.
- W2890965385 sameAs 2890965385 @default.
- W2890965385 citedByCount "37" @default.
- W2890965385 countsByYear W28909653852019 @default.
- W2890965385 countsByYear W28909653852020 @default.
- W2890965385 countsByYear W28909653852021 @default.
- W2890965385 countsByYear W28909653852022 @default.
- W2890965385 countsByYear W28909653852023 @default.
- W2890965385 crossrefType "journal-article" @default.
- W2890965385 hasAuthorship W2890965385A5003482086 @default.
- W2890965385 hasAuthorship W2890965385A5037338329 @default.
- W2890965385 hasAuthorship W2890965385A5040633805 @default.
- W2890965385 hasAuthorship W2890965385A5049337180 @default.
- W2890965385 hasAuthorship W2890965385A5084164625 @default.
- W2890965385 hasBestOaLocation W28909653851 @default.
- W2890965385 hasConcept C119857082 @default.
- W2890965385 hasConcept C126674687 @default.
- W2890965385 hasConcept C127313418 @default.
- W2890965385 hasConcept C132651083 @default.
- W2890965385 hasConcept C141452985 @default.
- W2890965385 hasConcept C143742823 @default.
- W2890965385 hasConcept C150772632 @default.
- W2890965385 hasConcept C151730666 @default.
- W2890965385 hasConcept C153294291 @default.
- W2890965385 hasConcept C153823671 @default.
- W2890965385 hasConcept C154945302 @default.
- W2890965385 hasConcept C179717631 @default.
- W2890965385 hasConcept C186108316 @default.
- W2890965385 hasConcept C18903297 @default.
- W2890965385 hasConcept C195975749 @default.
- W2890965385 hasConcept C205649164 @default.
- W2890965385 hasConcept C39432304 @default.
- W2890965385 hasConcept C41008148 @default.