Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890967861> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W2890967861 endingPage "1773" @default.
- W2890967861 startingPage "1754" @default.
- W2890967861 abstract "Purpose The well-known discrete methods of computational fluid dynamics (CFD), lattice Boltzmann method (LBM), cellular automata (CA), volume-of-fluid (VoF) and others rely on several parameters describing the boundary or the surface. Some of them are vector normal to the surface, coordinates of the point on the surface and the curvature. They are necessary for the reconstruction of the real surface (boundary) based on the values of the volume fractions of several cells. However, the simple methods commonly used for calculations of the vector normal to the surface are of unsatisfactory accuracy. In light of this, the purpose of this paper is to demonstrate a more accurate method for determining the vector normal to the surface. Design/methodology/approach Based on the thesis that information about the volume fractions of the 3 × 3 cell block should be enough for normal vector determination, a neural network (NN) was proposed for use in the paper. The normal vector and the volume fractions of the cells themselves can be defined on the basis of such variables as the location of the center and the radius of the circumference. Therefore, the NN is proposed to solve the inverse problem – to determine the normal vector based on known values of volume fractions. Volume fractions are inputs of NNs, while the normal vector is their output. Over a thousand variants of the surface location, orientations of the normal vector and curvatures were prepared for volume fraction calculations; their results were used for training, validating and testing the NNs. Findings The simplest NN with one neuron in the hidden layer shows better results than other commonly used methods, and an NN with four neurons produces results with errors below 1° relative to the orientation of the normal vector; for several cases, it proven to be more accurate by an order of magnitude. Practical implications The method can be used in the CFD, LBM, CA, VoF and other discrete computational methods. The more precise normal vector allows for a more accurate determination of the points on the surface and curvature in further calculations via the surface or interface tracking method. The paper contains the data for the practical application of developed NNs. The method is limited to regular square or cuboid lattices. Originality value The paper presents an original implementation of NNs for normal vector calculation connected with CFD, LBM and other application for fluid flow with free surface or phase transformation." @default.
- W2890967861 created "2018-09-27" @default.
- W2890967861 creator A5017544578 @default.
- W2890967861 date "2018-09-19" @default.
- W2890967861 modified "2023-09-30" @default.
- W2890967861 title "Neural networks for determining the vector normal to the surface in CFD, LBM and CA applications" @default.
- W2890967861 cites W1564316886 @default.
- W2890967861 cites W1969064103 @default.
- W2890967861 cites W1983958840 @default.
- W2890967861 cites W2005541192 @default.
- W2890967861 cites W2007898659 @default.
- W2890967861 cites W2014786311 @default.
- W2890967861 cites W2021081559 @default.
- W2890967861 cites W2031116265 @default.
- W2890967861 cites W2033227481 @default.
- W2890967861 cites W2040259398 @default.
- W2890967861 cites W2046161992 @default.
- W2890967861 cites W2047512501 @default.
- W2890967861 cites W2060138396 @default.
- W2890967861 cites W2080238211 @default.
- W2890967861 cites W2093919312 @default.
- W2890967861 cites W2117242079 @default.
- W2890967861 cites W2151177494 @default.
- W2890967861 cites W2152694125 @default.
- W2890967861 cites W2325494425 @default.
- W2890967861 cites W2571742309 @default.
- W2890967861 cites W2605305878 @default.
- W2890967861 cites W2606432719 @default.
- W2890967861 cites W3105697776 @default.
- W2890967861 cites W761654313 @default.
- W2890967861 doi "https://doi.org/10.1108/hff-08-2017-0292" @default.
- W2890967861 hasPublicationYear "2018" @default.
- W2890967861 type Work @default.
- W2890967861 sameAs 2890967861 @default.
- W2890967861 citedByCount "7" @default.
- W2890967861 countsByYear W28909678612019 @default.
- W2890967861 countsByYear W28909678612021 @default.
- W2890967861 countsByYear W28909678612022 @default.
- W2890967861 countsByYear W28909678612023 @default.
- W2890967861 crossrefType "journal-article" @default.
- W2890967861 hasAuthorship W2890967861A5017544578 @default.
- W2890967861 hasConcept C11413529 @default.
- W2890967861 hasConcept C118732077 @default.
- W2890967861 hasConcept C121332964 @default.
- W2890967861 hasConcept C127210992 @default.
- W2890967861 hasConcept C134306372 @default.
- W2890967861 hasConcept C154945302 @default.
- W2890967861 hasConcept C1633027 @default.
- W2890967861 hasConcept C195065555 @default.
- W2890967861 hasConcept C20556612 @default.
- W2890967861 hasConcept C21821499 @default.
- W2890967861 hasConcept C2524010 @default.
- W2890967861 hasConcept C2776799497 @default.
- W2890967861 hasConcept C33923547 @default.
- W2890967861 hasConcept C38349280 @default.
- W2890967861 hasConcept C41008148 @default.
- W2890967861 hasConcept C50644808 @default.
- W2890967861 hasConcept C57879066 @default.
- W2890967861 hasConcept C62520636 @default.
- W2890967861 hasConceptScore W2890967861C11413529 @default.
- W2890967861 hasConceptScore W2890967861C118732077 @default.
- W2890967861 hasConceptScore W2890967861C121332964 @default.
- W2890967861 hasConceptScore W2890967861C127210992 @default.
- W2890967861 hasConceptScore W2890967861C134306372 @default.
- W2890967861 hasConceptScore W2890967861C154945302 @default.
- W2890967861 hasConceptScore W2890967861C1633027 @default.
- W2890967861 hasConceptScore W2890967861C195065555 @default.
- W2890967861 hasConceptScore W2890967861C20556612 @default.
- W2890967861 hasConceptScore W2890967861C21821499 @default.
- W2890967861 hasConceptScore W2890967861C2524010 @default.
- W2890967861 hasConceptScore W2890967861C2776799497 @default.
- W2890967861 hasConceptScore W2890967861C33923547 @default.
- W2890967861 hasConceptScore W2890967861C38349280 @default.
- W2890967861 hasConceptScore W2890967861C41008148 @default.
- W2890967861 hasConceptScore W2890967861C50644808 @default.
- W2890967861 hasConceptScore W2890967861C57879066 @default.
- W2890967861 hasConceptScore W2890967861C62520636 @default.
- W2890967861 hasIssue "8" @default.
- W2890967861 hasLocation W28909678611 @default.
- W2890967861 hasOpenAccess W2890967861 @default.
- W2890967861 hasPrimaryLocation W28909678611 @default.
- W2890967861 hasRelatedWork W2029745592 @default.
- W2890967861 hasRelatedWork W2037600044 @default.
- W2890967861 hasRelatedWork W2107886400 @default.
- W2890967861 hasRelatedWork W2160587403 @default.
- W2890967861 hasRelatedWork W2272228702 @default.
- W2890967861 hasRelatedWork W2356351560 @default.
- W2890967861 hasRelatedWork W2594407020 @default.
- W2890967861 hasRelatedWork W2890967861 @default.
- W2890967861 hasRelatedWork W3130315780 @default.
- W2890967861 hasRelatedWork W3177888395 @default.
- W2890967861 hasVolume "28" @default.
- W2890967861 isParatext "false" @default.
- W2890967861 isRetracted "false" @default.
- W2890967861 magId "2890967861" @default.
- W2890967861 workType "article" @default.