Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890968382> ?p ?o ?g. }
- W2890968382 endingPage "108850" @default.
- W2890968382 startingPage "108850" @default.
- W2890968382 abstract "Physics-informed neural networks (PINNs) have recently emerged as an alternative way of solving partial differential equations (PDEs) without the need of building elaborate grids, instead, using a straightforward implementation. In particular, in addition to the deep neural network (DNN) for the solution, a second DNN is considered that represents the residual of the PDE. The residual is then combined with the mismatch in the given data of the solution in order to formulate the loss function. This framework is effective but is lacking uncertainty quantification of the solution due to the inherent randomness in the data or due to the approximation limitations of the DNN architecture. Here, we propose a new method with the objective of endowing the DNN with uncertainty quantification for both sources of uncertainty, i.e., the parametric uncertainty and the approximation uncertainty. We first account for the parametric uncertainty when the parameter in the differential equation is represented as a stochastic process. Multiple DNNs are designed to learn the modal functions of the arbitrary polynomial chaos (aPC) expansion of its solution by using stochastic data from sparse sensors. We can then make predictions from new sensor measurements very efficiently with the trained DNNs. Moreover, we employ dropout to correct the over-fitting and also to quantify the uncertainty of DNNs in approximating the modal functions. We then design an active learning strategy based on the dropout uncertainty to place new sensors in the domain to improve the predictions of DNNs. Several numerical tests are conducted for both the forward and the inverse problems to quantify the effectiveness of PINNs combined with uncertainty quantification. This NN-aPC new paradigm of physics-informed deep learning with uncertainty quantification can be readily applied to other types of stochastic PDEs in multi-dimensions." @default.
- W2890968382 created "2018-09-27" @default.
- W2890968382 creator A5008536963 @default.
- W2890968382 creator A5009658255 @default.
- W2890968382 creator A5035174542 @default.
- W2890968382 creator A5037109851 @default.
- W2890968382 date "2019-11-01" @default.
- W2890968382 modified "2023-10-09" @default.
- W2890968382 title "Quantifying total uncertainty in physics-informed neural networks for solving forward and inverse stochastic problems" @default.
- W2890968382 cites W1969599221 @default.
- W2890968382 cites W1978744409 @default.
- W2890968382 cites W1984943006 @default.
- W2890968382 cites W2003490955 @default.
- W2890968382 cites W2018159038 @default.
- W2890968382 cites W2022264564 @default.
- W2890968382 cites W2039852947 @default.
- W2890968382 cites W2087257783 @default.
- W2890968382 cites W2111051539 @default.
- W2890968382 cites W2113337191 @default.
- W2890968382 cites W2119334003 @default.
- W2890968382 cites W2148666448 @default.
- W2890968382 cites W2149498546 @default.
- W2890968382 cites W2238537209 @default.
- W2890968382 cites W2330192890 @default.
- W2890968382 cites W2525748878 @default.
- W2890968382 cites W2573864470 @default.
- W2890968382 cites W2605147767 @default.
- W2890968382 cites W2745110207 @default.
- W2890968382 cites W2784733489 @default.
- W2890968382 cites W2952935243 @default.
- W2890968382 cites W3101260193 @default.
- W2890968382 doi "https://doi.org/10.1016/j.jcp.2019.07.048" @default.
- W2890968382 hasPublicationYear "2019" @default.
- W2890968382 type Work @default.
- W2890968382 sameAs 2890968382 @default.
- W2890968382 citedByCount "232" @default.
- W2890968382 countsByYear W28909683822018 @default.
- W2890968382 countsByYear W28909683822019 @default.
- W2890968382 countsByYear W28909683822020 @default.
- W2890968382 countsByYear W28909683822021 @default.
- W2890968382 countsByYear W28909683822022 @default.
- W2890968382 countsByYear W28909683822023 @default.
- W2890968382 crossrefType "journal-article" @default.
- W2890968382 hasAuthorship W2890968382A5008536963 @default.
- W2890968382 hasAuthorship W2890968382A5009658255 @default.
- W2890968382 hasAuthorship W2890968382A5035174542 @default.
- W2890968382 hasAuthorship W2890968382A5037109851 @default.
- W2890968382 hasBestOaLocation W28909683821 @default.
- W2890968382 hasConcept C105795698 @default.
- W2890968382 hasConcept C11413529 @default.
- W2890968382 hasConcept C117251300 @default.
- W2890968382 hasConcept C119857082 @default.
- W2890968382 hasConcept C125112378 @default.
- W2890968382 hasConcept C126255220 @default.
- W2890968382 hasConcept C134306372 @default.
- W2890968382 hasConcept C135252773 @default.
- W2890968382 hasConcept C151319957 @default.
- W2890968382 hasConcept C154945302 @default.
- W2890968382 hasConcept C155512373 @default.
- W2890968382 hasConcept C19499675 @default.
- W2890968382 hasConcept C197656079 @default.
- W2890968382 hasConcept C28826006 @default.
- W2890968382 hasConcept C31258907 @default.
- W2890968382 hasConcept C32230216 @default.
- W2890968382 hasConcept C33923547 @default.
- W2890968382 hasConcept C41008148 @default.
- W2890968382 hasConcept C50644808 @default.
- W2890968382 hasConcept C51955184 @default.
- W2890968382 hasConcept C55479107 @default.
- W2890968382 hasConceptScore W2890968382C105795698 @default.
- W2890968382 hasConceptScore W2890968382C11413529 @default.
- W2890968382 hasConceptScore W2890968382C117251300 @default.
- W2890968382 hasConceptScore W2890968382C119857082 @default.
- W2890968382 hasConceptScore W2890968382C125112378 @default.
- W2890968382 hasConceptScore W2890968382C126255220 @default.
- W2890968382 hasConceptScore W2890968382C134306372 @default.
- W2890968382 hasConceptScore W2890968382C135252773 @default.
- W2890968382 hasConceptScore W2890968382C151319957 @default.
- W2890968382 hasConceptScore W2890968382C154945302 @default.
- W2890968382 hasConceptScore W2890968382C155512373 @default.
- W2890968382 hasConceptScore W2890968382C19499675 @default.
- W2890968382 hasConceptScore W2890968382C197656079 @default.
- W2890968382 hasConceptScore W2890968382C28826006 @default.
- W2890968382 hasConceptScore W2890968382C31258907 @default.
- W2890968382 hasConceptScore W2890968382C32230216 @default.
- W2890968382 hasConceptScore W2890968382C33923547 @default.
- W2890968382 hasConceptScore W2890968382C41008148 @default.
- W2890968382 hasConceptScore W2890968382C50644808 @default.
- W2890968382 hasConceptScore W2890968382C51955184 @default.
- W2890968382 hasConceptScore W2890968382C55479107 @default.
- W2890968382 hasFunder F4320321001 @default.
- W2890968382 hasFunder F4320332180 @default.
- W2890968382 hasFunder F4320336025 @default.
- W2890968382 hasFunder F4320338294 @default.
- W2890968382 hasFunder F4320338295 @default.
- W2890968382 hasLocation W28909683821 @default.
- W2890968382 hasLocation W28909683822 @default.
- W2890968382 hasLocation W28909683823 @default.