Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890972698> ?p ?o ?g. }
- W2890972698 endingPage "22" @default.
- W2890972698 startingPage "1" @default.
- W2890972698 abstract "Historical fault data are often difficult and expensive to acquire, which can prohibit the application of supervised learning techniques in the condition-based maintenance field. Hence, novelty detection techniques such as discrepancy analysis are useful because only healthy historical data are required. However, even if discrepancy analysis is implemented on a machine, some historical fault data will become available during the operational lifetime of the machine and could be utilised to improve the efficiency of the condition inference process. An open set recognition methodology relying on discrepancy analysis is proposed that is capable of detecting novelties when only healthy historical data are available. It is also capable of inferring the condition of the machine if historical fault data are available and it is further able to detect novelties in regions not well supported by the historical fault data. In the condition recognition procedure, Gaussian mixture models are used with Bayes’ rule and a decision rule to infer the condition of the machine in an open set recognition framework, where it is emphasised that it is beneficial to use the complete datasets (i.e. data acquired throughout the life of the component) for optimising the models. The benefit of the open set recognition model is that it is easy to incorporate new historical data in the framework as the data become available. In this work, practical aspects of the condition inference process such as the importance of good decision boundaries are highlighted and discussed as well. The methodology is validated on a synthetic dataset and experimental datasets acquired under varying operating conditions and it is also compared to a conventional classification process where discrepancy analysis is not used. The results indicate the potential of using the proposed methodology for rotating machine diagnostics under varying operating conditions." @default.
- W2890972698 created "2018-09-27" @default.
- W2890972698 creator A5040167578 @default.
- W2890972698 creator A5091276402 @default.
- W2890972698 date "2019-03-01" @default.
- W2890972698 modified "2023-09-27" @default.
- W2890972698 title "An open set recognition methodology utilising discrepancy analysis for gear diagnostics under varying operating conditions" @default.
- W2890972698 cites W1199827394 @default.
- W2890972698 cites W1965625823 @default.
- W2890972698 cites W1969644672 @default.
- W2890972698 cites W1970166607 @default.
- W2890972698 cites W1974332063 @default.
- W2890972698 cites W1985310528 @default.
- W2890972698 cites W2007201064 @default.
- W2890972698 cites W2018459374 @default.
- W2890972698 cites W2020296181 @default.
- W2890972698 cites W2026005712 @default.
- W2890972698 cites W2027176154 @default.
- W2890972698 cites W2028119131 @default.
- W2890972698 cites W2029230244 @default.
- W2890972698 cites W2031423206 @default.
- W2890972698 cites W2045186954 @default.
- W2890972698 cites W2092777731 @default.
- W2890972698 cites W2096022409 @default.
- W2890972698 cites W2102211123 @default.
- W2890972698 cites W2109147247 @default.
- W2890972698 cites W2119880843 @default.
- W2890972698 cites W2128838979 @default.
- W2890972698 cites W2152052718 @default.
- W2890972698 cites W2157866479 @default.
- W2890972698 cites W2172984516 @default.
- W2890972698 cites W2175061019 @default.
- W2890972698 cites W2175457405 @default.
- W2890972698 cites W2219903032 @default.
- W2890972698 cites W2287029277 @default.
- W2890972698 cites W2300604993 @default.
- W2890972698 cites W2304576798 @default.
- W2890972698 cites W2418213296 @default.
- W2890972698 cites W2467842870 @default.
- W2890972698 cites W2491643545 @default.
- W2890972698 cites W2514763704 @default.
- W2890972698 cites W2521543067 @default.
- W2890972698 cites W2549590127 @default.
- W2890972698 cites W2692693673 @default.
- W2890972698 cites W2738563279 @default.
- W2890972698 cites W2740883815 @default.
- W2890972698 cites W2743669539 @default.
- W2890972698 cites W2765975552 @default.
- W2890972698 cites W2794869810 @default.
- W2890972698 cites W2884839720 @default.
- W2890972698 cites W427289305 @default.
- W2890972698 doi "https://doi.org/10.1016/j.ymssp.2018.09.016" @default.
- W2890972698 hasPublicationYear "2019" @default.
- W2890972698 type Work @default.
- W2890972698 sameAs 2890972698 @default.
- W2890972698 citedByCount "10" @default.
- W2890972698 countsByYear W28909726982020 @default.
- W2890972698 countsByYear W28909726982021 @default.
- W2890972698 countsByYear W28909726982022 @default.
- W2890972698 countsByYear W28909726982023 @default.
- W2890972698 crossrefType "journal-article" @default.
- W2890972698 hasAuthorship W2890972698A5040167578 @default.
- W2890972698 hasAuthorship W2890972698A5091276402 @default.
- W2890972698 hasBestOaLocation W28909726982 @default.
- W2890972698 hasConcept C111919701 @default.
- W2890972698 hasConcept C119857082 @default.
- W2890972698 hasConcept C124101348 @default.
- W2890972698 hasConcept C127313418 @default.
- W2890972698 hasConcept C138885662 @default.
- W2890972698 hasConcept C152745839 @default.
- W2890972698 hasConcept C153180895 @default.
- W2890972698 hasConcept C154945302 @default.
- W2890972698 hasConcept C165205528 @default.
- W2890972698 hasConcept C172707124 @default.
- W2890972698 hasConcept C175551986 @default.
- W2890972698 hasConcept C177264268 @default.
- W2890972698 hasConcept C199360897 @default.
- W2890972698 hasConcept C202444582 @default.
- W2890972698 hasConcept C27206212 @default.
- W2890972698 hasConcept C2776214188 @default.
- W2890972698 hasConcept C2778738651 @default.
- W2890972698 hasConcept C2778924833 @default.
- W2890972698 hasConcept C33923547 @default.
- W2890972698 hasConcept C41008148 @default.
- W2890972698 hasConcept C58489278 @default.
- W2890972698 hasConcept C9652623 @default.
- W2890972698 hasConcept C98045186 @default.
- W2890972698 hasConceptScore W2890972698C111919701 @default.
- W2890972698 hasConceptScore W2890972698C119857082 @default.
- W2890972698 hasConceptScore W2890972698C124101348 @default.
- W2890972698 hasConceptScore W2890972698C127313418 @default.
- W2890972698 hasConceptScore W2890972698C138885662 @default.
- W2890972698 hasConceptScore W2890972698C152745839 @default.
- W2890972698 hasConceptScore W2890972698C153180895 @default.
- W2890972698 hasConceptScore W2890972698C154945302 @default.
- W2890972698 hasConceptScore W2890972698C165205528 @default.
- W2890972698 hasConceptScore W2890972698C172707124 @default.
- W2890972698 hasConceptScore W2890972698C175551986 @default.