Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890974112> ?p ?o ?g. }
- W2890974112 endingPage "71" @default.
- W2890974112 startingPage "45" @default.
- W2890974112 abstract "The distribution of trace ore elements in different paragenetic stages of pyrite has been documented for the first time in the sub-seafloor of the actively-forming TAG massive sulfide deposit. Trace element distributions have been determined by in-situ laser ablation inductively-coupled plasma mass spectrometry (LA-ICP-MS) of pyrite formed at different stages of mineralization, and at different temperatures constrained by previously published fluid inclusion analyses. The data reveal a strong dependence on paragenetic stage, with distinct low- and high-temperature enrichments. Porous pyrite (and marcasite) formed at low temperatures (<300 °C) in the outer margins of the deposit is enriched in As, Ag, Tl, Pb, Sb, Mo, W, Zn, Ga, Ge, Cd, In, Te, Au, Mn, V, and U. Coarse-grained pyrite formed at higher temperatures (>350 °C) at the base of the hydrothermal mound and in the stockwork zone is enriched in Co, Se, Bi, Cu, Ni, and Sn. A number of different sub-types of pyrite also have characteristic trace element signatures; e.g., the earliest pyrite formed at the highest temperatures is always enriched in Co and Se compared to later stages. Ablation profiles for Co, Se, and Ni are smooth and indicate that these elements are present mainly in lattice substitutions rather than as inclusions of other sulfides. Profiles for As, Sb, Tl, and Cu can be either irregular or smooth, indicating both lattice substitutions and inclusions. Lead and Ag have mostly smooth profiles, but because Pb cannot substitute directly into the pyrite lattice, it is interpreted to be present as homogeneously distributed micro- or nano-scale particles. The behavior of the different trace elements mainly reflects their aqueous speciation in the hydrothermal fluids at different temperatures, and for some elements like Co and Se, strong partitioning into the pyrite lattice at elevated temperatures. Adsorption onto pyrite surfaces controls the distribution of a number of redox-sensitive elements (i.e., Mo, V, Ni, U), particularly in the upper part of the mound which is infiltrated by cold seawater. Where micro- or nano-scale inclusions of chalcopyrite, sphalerite, galena, or sulfosalts are present, there is still a strong temperature dependence on the inclusion population (e.g., more abundant chalcopyrite in the highest-temperature pyrite), suggesting that the inclusions were co-precipitated with pyrite rather than overgrown. However, at the deposit scale, the trace element distributions are also strongly controlled by remobilization and chemical zone refining, as previously documented in bulk geochemical profiles. The results show that pyrite chemistry is a remarkably good model of the chemistry of the entire hydrothermal system. For many trace elements, the concentrations in pyrite are highly predictive in terms of the conditions of mineral formation over a wide range of temperatures, from the stockwork zone to the cooler outer margins of the deposit. Calculated minimum concentrations of the trace elements in the fluids needed to account for the observed concentrations in pyrite show good agreement with measured vent fluid concentrations, particularly Pb, As, Mo, Ag, and Tl. However, significantly higher concentrations are indicated for Co (and Se) than have been measured in sampled fluids, confirming the strong partitioning of these elements into high-temperature pyrite." @default.
- W2890974112 created "2018-09-27" @default.
- W2890974112 creator A5023848976 @default.
- W2890974112 creator A5039370924 @default.
- W2890974112 creator A5043716768 @default.
- W2890974112 creator A5059933758 @default.
- W2890974112 creator A5080490573 @default.
- W2890974112 date "2018-10-01" @default.
- W2890974112 modified "2023-10-11" @default.
- W2890974112 title "Constraints on the behavior of trace elements in the actively-forming TAG deposit, Mid-Atlantic Ridge, based on LA-ICP-MS analyses of pyrite" @default.
- W2890974112 cites W1434692241 @default.
- W2890974112 cites W1674455985 @default.
- W2890974112 cites W1772666815 @default.
- W2890974112 cites W1846057075 @default.
- W2890974112 cites W1964704563 @default.
- W2890974112 cites W1965693689 @default.
- W2890974112 cites W1966008009 @default.
- W2890974112 cites W1966983664 @default.
- W2890974112 cites W1967588347 @default.
- W2890974112 cites W1968868266 @default.
- W2890974112 cites W1969343613 @default.
- W2890974112 cites W1969353666 @default.
- W2890974112 cites W1970688872 @default.
- W2890974112 cites W1974024444 @default.
- W2890974112 cites W1976819346 @default.
- W2890974112 cites W1976984795 @default.
- W2890974112 cites W1977211014 @default.
- W2890974112 cites W1977653940 @default.
- W2890974112 cites W1978655405 @default.
- W2890974112 cites W1979727721 @default.
- W2890974112 cites W1984571476 @default.
- W2890974112 cites W1989875408 @default.
- W2890974112 cites W1991394410 @default.
- W2890974112 cites W1992614560 @default.
- W2890974112 cites W1995785490 @default.
- W2890974112 cites W1998048740 @default.
- W2890974112 cites W1999155223 @default.
- W2890974112 cites W2001201232 @default.
- W2890974112 cites W2001397478 @default.
- W2890974112 cites W2007843418 @default.
- W2890974112 cites W2016016262 @default.
- W2890974112 cites W2018093298 @default.
- W2890974112 cites W2019469757 @default.
- W2890974112 cites W2019628966 @default.
- W2890974112 cites W2021080224 @default.
- W2890974112 cites W2022943819 @default.
- W2890974112 cites W2026986830 @default.
- W2890974112 cites W2029600833 @default.
- W2890974112 cites W2031128482 @default.
- W2890974112 cites W2031204284 @default.
- W2890974112 cites W2031247032 @default.
- W2890974112 cites W2032978089 @default.
- W2890974112 cites W2034748594 @default.
- W2890974112 cites W2034887466 @default.
- W2890974112 cites W2043074822 @default.
- W2890974112 cites W2043710603 @default.
- W2890974112 cites W2044342397 @default.
- W2890974112 cites W2044647613 @default.
- W2890974112 cites W2045638671 @default.
- W2890974112 cites W2047436128 @default.
- W2890974112 cites W2055761381 @default.
- W2890974112 cites W2056146645 @default.
- W2890974112 cites W2058382324 @default.
- W2890974112 cites W2061555440 @default.
- W2890974112 cites W2062244609 @default.
- W2890974112 cites W2064295439 @default.
- W2890974112 cites W2064728256 @default.
- W2890974112 cites W2065940550 @default.
- W2890974112 cites W2067198605 @default.
- W2890974112 cites W2069352695 @default.
- W2890974112 cites W2070387486 @default.
- W2890974112 cites W2071008865 @default.
- W2890974112 cites W2073700415 @default.
- W2890974112 cites W2073778712 @default.
- W2890974112 cites W2074699188 @default.
- W2890974112 cites W2075017279 @default.
- W2890974112 cites W2075959402 @default.
- W2890974112 cites W2076382171 @default.
- W2890974112 cites W2081015252 @default.
- W2890974112 cites W2082740169 @default.
- W2890974112 cites W2083340874 @default.
- W2890974112 cites W2085413632 @default.
- W2890974112 cites W2090562875 @default.
- W2890974112 cites W2090996879 @default.
- W2890974112 cites W2091429053 @default.
- W2890974112 cites W2095691002 @default.
- W2890974112 cites W2099338420 @default.
- W2890974112 cites W2099535239 @default.
- W2890974112 cites W2101918679 @default.
- W2890974112 cites W2102479932 @default.
- W2890974112 cites W2107327057 @default.
- W2890974112 cites W2111763116 @default.
- W2890974112 cites W2121499552 @default.
- W2890974112 cites W2123826066 @default.
- W2890974112 cites W2126379524 @default.
- W2890974112 cites W2130626244 @default.
- W2890974112 cites W2136975612 @default.
- W2890974112 cites W2138731459 @default.