Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890976145> ?p ?o ?g. }
- W2890976145 endingPage "310" @default.
- W2890976145 startingPage "293" @default.
- W2890976145 abstract "In this paper, we apply Bayesian inference to model and forecast intraday trading volume, using autoregressive conditional volume (ACV) models, and we evaluate the quality of volume point forecasts. In the empirical application, we focus on the analysis of both in‐ and out‐of‐sample performance of Bayesian ACV models estimated for 2‐minute trading volume data for stocks quoted on the Warsaw Stock Exchange in Poland. We calculate two types of point forecasts, using either expected values or medians of predictive distributions. We conclude that, in general, all considered models generate significantly biased forecasts. We also observe that the considered models significantly outperform such benchmarks as the naive or rolling means forecasts. Moreover, in terms of root mean squared forecast errors, point predictions obtained within the ACV model with exponential distribution emerge superior compared to those calculated in structures with more general innovation distributions, although in many cases this characteristic turns out to be statistically insignificant. On the other hand, when comparing mean absolute forecast errors, the median forecasts obtained within the ACV models with Burr and generalized gamma distribution are found to be statistically better than other forecasts." @default.
- W2890976145 created "2018-09-27" @default.
- W2890976145 creator A5085655197 @default.
- W2890976145 date "2018-11-09" @default.
- W2890976145 modified "2023-09-30" @default.
- W2890976145 title "Point forecasting of intraday volume using Bayesian autoregressive conditional volume models" @default.
- W2890976145 cites W1570065356 @default.
- W2890976145 cites W1721315448 @default.
- W2890976145 cites W1738720631 @default.
- W2890976145 cites W1858773330 @default.
- W2890976145 cites W1970241040 @default.
- W2890976145 cites W1979986072 @default.
- W2890976145 cites W1987606593 @default.
- W2890976145 cites W2003594136 @default.
- W2890976145 cites W2011903355 @default.
- W2890976145 cites W2013067493 @default.
- W2890976145 cites W2028500006 @default.
- W2890976145 cites W2033815796 @default.
- W2890976145 cites W2034392244 @default.
- W2890976145 cites W2035210325 @default.
- W2890976145 cites W2040503026 @default.
- W2890976145 cites W2041904546 @default.
- W2890976145 cites W2050238052 @default.
- W2890976145 cites W2061267541 @default.
- W2890976145 cites W2075965721 @default.
- W2890976145 cites W2082182397 @default.
- W2890976145 cites W2089942891 @default.
- W2890976145 cites W2090800857 @default.
- W2890976145 cites W2094006360 @default.
- W2890976145 cites W2107640102 @default.
- W2890976145 cites W2110752212 @default.
- W2890976145 cites W2117178635 @default.
- W2890976145 cites W2127483845 @default.
- W2890976145 cites W2138309709 @default.
- W2890976145 cites W2139918108 @default.
- W2890976145 cites W2151400558 @default.
- W2890976145 cites W2153146814 @default.
- W2890976145 cites W2167759315 @default.
- W2890976145 cites W2559879057 @default.
- W2890976145 cites W2562645122 @default.
- W2890976145 cites W2787974994 @default.
- W2890976145 cites W2794279843 @default.
- W2890976145 cites W3121526400 @default.
- W2890976145 cites W3121958425 @default.
- W2890976145 cites W3121960989 @default.
- W2890976145 cites W3122162735 @default.
- W2890976145 cites W3123774674 @default.
- W2890976145 cites W3124506232 @default.
- W2890976145 cites W3124647621 @default.
- W2890976145 cites W3124882391 @default.
- W2890976145 cites W3125639666 @default.
- W2890976145 cites W3147777389 @default.
- W2890976145 cites W348751596 @default.
- W2890976145 doi "https://doi.org/10.1002/for.2555" @default.
- W2890976145 hasPublicationYear "2018" @default.
- W2890976145 type Work @default.
- W2890976145 sameAs 2890976145 @default.
- W2890976145 citedByCount "4" @default.
- W2890976145 countsByYear W28909761452021 @default.
- W2890976145 countsByYear W28909761452023 @default.
- W2890976145 crossrefType "journal-article" @default.
- W2890976145 hasAuthorship W2890976145A5085655197 @default.
- W2890976145 hasConcept C107673813 @default.
- W2890976145 hasConcept C121332964 @default.
- W2890976145 hasConcept C149782125 @default.
- W2890976145 hasConcept C154945302 @default.
- W2890976145 hasConcept C159877910 @default.
- W2890976145 hasConcept C162324750 @default.
- W2890976145 hasConcept C20556612 @default.
- W2890976145 hasConcept C41008148 @default.
- W2890976145 hasConcept C97355855 @default.
- W2890976145 hasConceptScore W2890976145C107673813 @default.
- W2890976145 hasConceptScore W2890976145C121332964 @default.
- W2890976145 hasConceptScore W2890976145C149782125 @default.
- W2890976145 hasConceptScore W2890976145C154945302 @default.
- W2890976145 hasConceptScore W2890976145C159877910 @default.
- W2890976145 hasConceptScore W2890976145C162324750 @default.
- W2890976145 hasConceptScore W2890976145C20556612 @default.
- W2890976145 hasConceptScore W2890976145C41008148 @default.
- W2890976145 hasConceptScore W2890976145C97355855 @default.
- W2890976145 hasIssue "4" @default.
- W2890976145 hasLocation W28909761451 @default.
- W2890976145 hasOpenAccess W2890976145 @default.
- W2890976145 hasPrimaryLocation W28909761451 @default.
- W2890976145 hasRelatedWork W2007163292 @default.
- W2890976145 hasRelatedWork W2012454462 @default.
- W2890976145 hasRelatedWork W2042380567 @default.
- W2890976145 hasRelatedWork W2077706297 @default.
- W2890976145 hasRelatedWork W2084545158 @default.
- W2890976145 hasRelatedWork W2098133347 @default.
- W2890976145 hasRelatedWork W2987247803 @default.
- W2890976145 hasRelatedWork W3121264095 @default.
- W2890976145 hasRelatedWork W3122157831 @default.
- W2890976145 hasRelatedWork W3151724758 @default.
- W2890976145 hasVolume "38" @default.
- W2890976145 isParatext "false" @default.
- W2890976145 isRetracted "false" @default.
- W2890976145 magId "2890976145" @default.