Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890981503> ?p ?o ?g. }
- W2890981503 endingPage "50719" @default.
- W2890981503 startingPage "50709" @default.
- W2890981503 abstract "Vibration signals contain abundant information which can reflect the running state of high-speed trains. Accurate vibration signal prediction can provide references for anomaly detection of the gearbox in high-speed trains. This paper develops a hybrid model combining ensemble empirical mode decomposition (EEMD) with auto regression (AR) and support vector regression (SVR) models. First, the EEMD method is applied to decompose the vibration acceleration signal of gearbox. Second, AR models are employed to predict the intrinsic mode functions and the outputs are aggregated as the final result of AR. Third, reconstruct phase space and establish SVR models to predict the components; The predictions are aggregated as the final result of SVR. Finally, the results predicted using the AR and SVR models are weighted and summed together, with the weights being optimized by the chaotic particle swarm optimization algorithm. The actual operation monitoring data are used to validate the hybrid model. Data analysis demonstrates that the proposed method has better approximation compared with the AR model, the SVR model and the RBF neural network model." @default.
- W2890981503 created "2018-09-27" @default.
- W2890981503 creator A5011968458 @default.
- W2890981503 creator A5035751044 @default.
- W2890981503 creator A5060746145 @default.
- W2890981503 creator A5066047346 @default.
- W2890981503 date "2018-01-01" @default.
- W2890981503 modified "2023-10-15" @default.
- W2890981503 title "Vibration Signal Prediction of Gearbox in High-Speed Train Based on Monitoring Data" @default.
- W2890981503 cites W1562862934 @default.
- W2890981503 cites W1978266801 @default.
- W2890981503 cites W1978904808 @default.
- W2890981503 cites W1987728022 @default.
- W2890981503 cites W2072034036 @default.
- W2890981503 cites W2079473768 @default.
- W2890981503 cites W2080552614 @default.
- W2890981503 cites W2088202114 @default.
- W2890981503 cites W2090568397 @default.
- W2890981503 cites W2120390927 @default.
- W2890981503 cites W2290873233 @default.
- W2890981503 cites W2505879376 @default.
- W2890981503 cites W2521126095 @default.
- W2890981503 cites W2558832882 @default.
- W2890981503 cites W2573587735 @default.
- W2890981503 cites W2587865582 @default.
- W2890981503 cites W2588847126 @default.
- W2890981503 cites W2591818304 @default.
- W2890981503 cites W2595266455 @default.
- W2890981503 cites W2605732569 @default.
- W2890981503 cites W2606204126 @default.
- W2890981503 cites W2611347159 @default.
- W2890981503 cites W2621539669 @default.
- W2890981503 cites W2729636862 @default.
- W2890981503 cites W2737321324 @default.
- W2890981503 cites W2737897717 @default.
- W2890981503 cites W2741768983 @default.
- W2890981503 cites W2743812350 @default.
- W2890981503 cites W2747193921 @default.
- W2890981503 cites W2768148617 @default.
- W2890981503 cites W2776922538 @default.
- W2890981503 cites W2780014678 @default.
- W2890981503 cites W2782143633 @default.
- W2890981503 cites W2809951001 @default.
- W2890981503 cites W2888727839 @default.
- W2890981503 doi "https://doi.org/10.1109/access.2018.2868197" @default.
- W2890981503 hasPublicationYear "2018" @default.
- W2890981503 type Work @default.
- W2890981503 sameAs 2890981503 @default.
- W2890981503 citedByCount "15" @default.
- W2890981503 countsByYear W28909815032019 @default.
- W2890981503 countsByYear W28909815032020 @default.
- W2890981503 countsByYear W28909815032021 @default.
- W2890981503 countsByYear W28909815032022 @default.
- W2890981503 countsByYear W28909815032023 @default.
- W2890981503 crossrefType "journal-article" @default.
- W2890981503 hasAuthorship W2890981503A5011968458 @default.
- W2890981503 hasAuthorship W2890981503A5035751044 @default.
- W2890981503 hasAuthorship W2890981503A5060746145 @default.
- W2890981503 hasAuthorship W2890981503A5066047346 @default.
- W2890981503 hasBestOaLocation W28909815031 @default.
- W2890981503 hasConcept C106131492 @default.
- W2890981503 hasConcept C11413529 @default.
- W2890981503 hasConcept C117896860 @default.
- W2890981503 hasConcept C121332964 @default.
- W2890981503 hasConcept C12267149 @default.
- W2890981503 hasConcept C153180895 @default.
- W2890981503 hasConcept C154945302 @default.
- W2890981503 hasConcept C190839683 @default.
- W2890981503 hasConcept C198394728 @default.
- W2890981503 hasConcept C199360897 @default.
- W2890981503 hasConcept C205649164 @default.
- W2890981503 hasConcept C25570617 @default.
- W2890981503 hasConcept C2779843651 @default.
- W2890981503 hasConcept C31972630 @default.
- W2890981503 hasConcept C41008148 @default.
- W2890981503 hasConcept C50644808 @default.
- W2890981503 hasConcept C58640448 @default.
- W2890981503 hasConcept C62520636 @default.
- W2890981503 hasConcept C74650414 @default.
- W2890981503 hasConcept C85617194 @default.
- W2890981503 hasConceptScore W2890981503C106131492 @default.
- W2890981503 hasConceptScore W2890981503C11413529 @default.
- W2890981503 hasConceptScore W2890981503C117896860 @default.
- W2890981503 hasConceptScore W2890981503C121332964 @default.
- W2890981503 hasConceptScore W2890981503C12267149 @default.
- W2890981503 hasConceptScore W2890981503C153180895 @default.
- W2890981503 hasConceptScore W2890981503C154945302 @default.
- W2890981503 hasConceptScore W2890981503C190839683 @default.
- W2890981503 hasConceptScore W2890981503C198394728 @default.
- W2890981503 hasConceptScore W2890981503C199360897 @default.
- W2890981503 hasConceptScore W2890981503C205649164 @default.
- W2890981503 hasConceptScore W2890981503C25570617 @default.
- W2890981503 hasConceptScore W2890981503C2779843651 @default.
- W2890981503 hasConceptScore W2890981503C31972630 @default.
- W2890981503 hasConceptScore W2890981503C41008148 @default.
- W2890981503 hasConceptScore W2890981503C50644808 @default.
- W2890981503 hasConceptScore W2890981503C58640448 @default.
- W2890981503 hasConceptScore W2890981503C62520636 @default.