Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890985016> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W2890985016 abstract "An integral representation result for strictly positive subharmonic functions of a one-dimensional regular diffusion is established. More precisely, any such function can be written as a linear combination of an increasing and a decreasing subharmonic function that solve an integral equation [ g(x)=a + int v(x,y)mu_A(dy) + kappa s(x), ] where $a>0$, $kappa in mathbb{R}$, $s$ is a scale function of the diffusion, $mu_A$ is a Radon measure, and $v$ is a kernel that is explicitly determined by the scale function. This integral equation in turn allows one construct a pair $(g,A)$ such that $g$ is a subharmonic function, $A$ is a continuous additive functional with Revuz measure $mu_A$ and $g(X)exp(-A)$ is a local martingale. The changes of measures associated with such pairs are studied and shown to modify the long term behaviour of the original diffusion process to exhibit transience. Theory is illustrated via examples that in particular contain a sequence of measure transformations that render the diffusion irregular in the limit by breaking the state space into distinct regions with soft and hard borders. Finally, the theory is applied to find an explicit solution to an optimal stopping problem with random discounting." @default.
- W2890985016 created "2018-09-27" @default.
- W2890985016 creator A5026019066 @default.
- W2890985016 date "2018-09-21" @default.
- W2890985016 modified "2023-09-27" @default.
- W2890985016 title "Integral representation of subharmonic functions and optimal stopping with random discounting" @default.
- W2890985016 cites W1485598997 @default.
- W2890985016 cites W1525941339 @default.
- W2890985016 cites W1545370368 @default.
- W2890985016 cites W1976237903 @default.
- W2890985016 cites W1995522593 @default.
- W2890985016 cites W1996097431 @default.
- W2890985016 cites W1997204748 @default.
- W2890985016 cites W2000991167 @default.
- W2890985016 cites W2014234623 @default.
- W2890985016 cites W2014917521 @default.
- W2890985016 cites W2038881049 @default.
- W2890985016 cites W2041441119 @default.
- W2890985016 cites W2042620347 @default.
- W2890985016 cites W2058639296 @default.
- W2890985016 cites W2114847643 @default.
- W2890985016 cites W2137390163 @default.
- W2890985016 cites W2324734891 @default.
- W2890985016 cites W2493420377 @default.
- W2890985016 hasPublicationYear "2018" @default.
- W2890985016 type Work @default.
- W2890985016 sameAs 2890985016 @default.
- W2890985016 citedByCount "0" @default.
- W2890985016 crossrefType "posted-content" @default.
- W2890985016 hasAuthorship W2890985016A5026019066 @default.
- W2890985016 hasConcept C134306372 @default.
- W2890985016 hasConcept C14036430 @default.
- W2890985016 hasConcept C202444582 @default.
- W2890985016 hasConcept C2780009758 @default.
- W2890985016 hasConcept C28826006 @default.
- W2890985016 hasConcept C3017618536 @default.
- W2890985016 hasConcept C33923547 @default.
- W2890985016 hasConcept C34388435 @default.
- W2890985016 hasConcept C41008148 @default.
- W2890985016 hasConcept C43994743 @default.
- W2890985016 hasConcept C48406656 @default.
- W2890985016 hasConcept C56739046 @default.
- W2890985016 hasConcept C68710425 @default.
- W2890985016 hasConcept C74193536 @default.
- W2890985016 hasConcept C77088390 @default.
- W2890985016 hasConcept C78458016 @default.
- W2890985016 hasConcept C86803240 @default.
- W2890985016 hasConceptScore W2890985016C134306372 @default.
- W2890985016 hasConceptScore W2890985016C14036430 @default.
- W2890985016 hasConceptScore W2890985016C202444582 @default.
- W2890985016 hasConceptScore W2890985016C2780009758 @default.
- W2890985016 hasConceptScore W2890985016C28826006 @default.
- W2890985016 hasConceptScore W2890985016C3017618536 @default.
- W2890985016 hasConceptScore W2890985016C33923547 @default.
- W2890985016 hasConceptScore W2890985016C34388435 @default.
- W2890985016 hasConceptScore W2890985016C41008148 @default.
- W2890985016 hasConceptScore W2890985016C43994743 @default.
- W2890985016 hasConceptScore W2890985016C48406656 @default.
- W2890985016 hasConceptScore W2890985016C56739046 @default.
- W2890985016 hasConceptScore W2890985016C68710425 @default.
- W2890985016 hasConceptScore W2890985016C74193536 @default.
- W2890985016 hasConceptScore W2890985016C77088390 @default.
- W2890985016 hasConceptScore W2890985016C78458016 @default.
- W2890985016 hasConceptScore W2890985016C86803240 @default.
- W2890985016 hasLocation W28909850161 @default.
- W2890985016 hasOpenAccess W2890985016 @default.
- W2890985016 hasPrimaryLocation W28909850161 @default.
- W2890985016 hasRelatedWork W1794312120 @default.
- W2890985016 hasRelatedWork W181494284 @default.
- W2890985016 hasRelatedWork W1979987326 @default.
- W2890985016 hasRelatedWork W1996926988 @default.
- W2890985016 hasRelatedWork W2008173431 @default.
- W2890985016 hasRelatedWork W2172129579 @default.
- W2890985016 hasRelatedWork W2256587582 @default.
- W2890985016 hasRelatedWork W2286642090 @default.
- W2890985016 hasRelatedWork W2781692913 @default.
- W2890985016 hasRelatedWork W2884177155 @default.
- W2890985016 hasRelatedWork W2937179554 @default.
- W2890985016 hasRelatedWork W2950069374 @default.
- W2890985016 hasRelatedWork W2950768913 @default.
- W2890985016 hasRelatedWork W2964009828 @default.
- W2890985016 hasRelatedWork W2968242829 @default.
- W2890985016 hasRelatedWork W2982404654 @default.
- W2890985016 hasRelatedWork W3106183795 @default.
- W2890985016 hasRelatedWork W3123344130 @default.
- W2890985016 hasRelatedWork W3125208882 @default.
- W2890985016 hasRelatedWork W2409057605 @default.
- W2890985016 isParatext "false" @default.
- W2890985016 isRetracted "false" @default.
- W2890985016 magId "2890985016" @default.
- W2890985016 workType "article" @default.