Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890985598> ?p ?o ?g. }
- W2890985598 endingPage "858" @default.
- W2890985598 startingPage "833" @default.
- W2890985598 abstract "The use of social media has become a regular habit for many and has changed the way people interact with each other. In this article, we focus on analyzing whether news headlines support tweets and whether reviews are deceptive by analyzing the interaction or the influence that these texts have on the others, thus exploiting contextual information. Concretely, we define a deep learning method for relation–based argument mining to extract argumentative relations of attack and support. We then use this method for determining whether news articles support tweets, a useful task in fact-checking settings, where determining agreement toward a statement is a useful step toward determining its truthfulness. Furthermore, we use our method for extracting bipolar argumentation frameworks from reviews to help detect whether they are deceptive. We show experimentally that our method performs well in both settings. In particular, in the case of deception detection, our method contributes a novel argumentative feature that, when used in combination with other features in standard supervised classifiers, outperforms the latter even on small data sets." @default.
- W2890985598 created "2018-09-27" @default.
- W2890985598 creator A5034045968 @default.
- W2890985598 creator A5078354590 @default.
- W2890985598 date "2018-12-01" @default.
- W2890985598 modified "2023-09-23" @default.
- W2890985598 title "Combining Deep Learning and Argumentative Reasoning for the Analysis of Social Media Textual Content Using Small Data Sets" @default.
- W2890985598 cites W1606218761 @default.
- W2890985598 cites W179875071 @default.
- W2890985598 cites W1840435438 @default.
- W2890985598 cites W1851422430 @default.
- W2890985598 cites W1902027874 @default.
- W2890985598 cites W1979504415 @default.
- W2890985598 cites W1979822054 @default.
- W2890985598 cites W2016266039 @default.
- W2890985598 cites W2035896792 @default.
- W2890985598 cites W2064675550 @default.
- W2890985598 cites W2103063352 @default.
- W2890985598 cites W2104126268 @default.
- W2890985598 cites W2107878631 @default.
- W2890985598 cites W2110485445 @default.
- W2890985598 cites W2131774270 @default.
- W2890985598 cites W2136710010 @default.
- W2890985598 cites W2154058875 @default.
- W2890985598 cites W2159359879 @default.
- W2890985598 cites W2162317738 @default.
- W2890985598 cites W2211192759 @default.
- W2890985598 cites W2250299341 @default.
- W2890985598 cites W2250539671 @default.
- W2890985598 cites W2251048393 @default.
- W2890985598 cites W2251645975 @default.
- W2890985598 cites W2257979135 @default.
- W2890985598 cites W2308720496 @default.
- W2890985598 cites W2327805699 @default.
- W2890985598 cites W2404406180 @default.
- W2890985598 cites W2470673105 @default.
- W2890985598 cites W2512040843 @default.
- W2890985598 cites W2514892918 @default.
- W2890985598 cites W2516171518 @default.
- W2890985598 cites W2540268649 @default.
- W2890985598 cites W2562273329 @default.
- W2890985598 cites W2562522356 @default.
- W2890985598 cites W2569238137 @default.
- W2890985598 cites W2589020727 @default.
- W2890985598 cites W2609722168 @default.
- W2890985598 cites W2615337847 @default.
- W2890985598 cites W2757512670 @default.
- W2890985598 cites W2759690420 @default.
- W2890985598 cites W2760347205 @default.
- W2890985598 cites W2763486686 @default.
- W2890985598 cites W2911964244 @default.
- W2890985598 cites W2919115771 @default.
- W2890985598 cites W2962878247 @default.
- W2890985598 cites W2963591087 @default.
- W2890985598 cites W2963731165 @default.
- W2890985598 cites W4237791300 @default.
- W2890985598 doi "https://doi.org/10.1162/coli_a_00338" @default.
- W2890985598 hasPublicationYear "2018" @default.
- W2890985598 type Work @default.
- W2890985598 sameAs 2890985598 @default.
- W2890985598 citedByCount "18" @default.
- W2890985598 countsByYear W28909855982019 @default.
- W2890985598 countsByYear W28909855982020 @default.
- W2890985598 countsByYear W28909855982021 @default.
- W2890985598 countsByYear W28909855982022 @default.
- W2890985598 countsByYear W28909855982023 @default.
- W2890985598 crossrefType "journal-article" @default.
- W2890985598 hasAuthorship W2890985598A5034045968 @default.
- W2890985598 hasAuthorship W2890985598A5078354590 @default.
- W2890985598 hasBestOaLocation W28909855981 @default.
- W2890985598 hasConcept C108583219 @default.
- W2890985598 hasConcept C120665830 @default.
- W2890985598 hasConcept C121332964 @default.
- W2890985598 hasConcept C124101348 @default.
- W2890985598 hasConcept C136764020 @default.
- W2890985598 hasConcept C138885662 @default.
- W2890985598 hasConcept C154945302 @default.
- W2890985598 hasConcept C15744967 @default.
- W2890985598 hasConcept C162324750 @default.
- W2890985598 hasConcept C185592680 @default.
- W2890985598 hasConcept C187736073 @default.
- W2890985598 hasConcept C192209626 @default.
- W2890985598 hasConcept C204321447 @default.
- W2890985598 hasConcept C23123220 @default.
- W2890985598 hasConcept C25343380 @default.
- W2890985598 hasConcept C2776401178 @default.
- W2890985598 hasConcept C2777026412 @default.
- W2890985598 hasConcept C2778827112 @default.
- W2890985598 hasConcept C2779267917 @default.
- W2890985598 hasConcept C2779607372 @default.
- W2890985598 hasConcept C2780451532 @default.
- W2890985598 hasConcept C2781306805 @default.
- W2890985598 hasConcept C41008148 @default.
- W2890985598 hasConcept C41895202 @default.
- W2890985598 hasConcept C518677369 @default.
- W2890985598 hasConcept C55493867 @default.
- W2890985598 hasConcept C65059942 @default.
- W2890985598 hasConcept C77805123 @default.