Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890986727> ?p ?o ?g. }
Showing items 1 to 60 of
60
with 100 items per page.
- W2890986727 abstract "Session topic areaData science methods: machine learning in risk factor surveillance
 Overall objectives or goalBackgroundDecades of research have shown that factors such as living conditions, and not just medical treatments and lifestyles, are strongly associated with the health of individuals and populations. These distal factors (social, economic, cultural and environmental) are collectively called the social determinants of health (SDOH), and affect health inequities (i.e. differences in health outcomes that are avoidable, unfair and unjust). Gathering data on both risk factors (biomedical/clinical) and SDOH is of the utmost importance to quantify their contribution in disease causation at individual and population levels.
 Social determinants of health and biomedical/clinical risk factors surveillance (collectively termed as “risk factor surveillance”) refers to the monitoring of distal and proximal factors that impact the health of individuals and populations and health equity. It offers the opportunity to “forecast” population health, potential disease incidence, and guide intervention programs to prevent disease manifestation. However, current risk factor surveillance data is limited in geographical representation, completion, and content and time. Identifying novel methods of collecting risk factors and SDOH data can allow for opportunities for population health and disease forecasting using high quality, nationally-representative, real-time data.
 Recent breakthroughs in artificial intelligence (AI), such as speech and image recognition, offers new opportunities to develop novel methods to collect risk factor information at individual levels. Meanwhile, we can use intelligent computer systems to process vast amount of data and turn those data into actionable information and knowledge for improving population health.
 Collaborative Session ObjectiveThrough a CIHR-funded project, we are assembling a team of national and international experts including stakeholders, public health officers/physicians, and researchers, who will identify key gaps in risk factor surveillance and data collection technologies. Resulting projects will focus on using AI for risk factor surveillance, for the ultimate purpose of monitoring population health, guiding intervention programs, and preventing disease. Our projects will focus on discovering and refining innovative methods in data collection, management, as well as assessment of data quality (i.e. selection bias). We will engage scientists and knowledge users from the inception of the ideas to ensure the relevancy of the final projects. This project aims to link medical records, clinical information, and SDOH data, to alter the way we conduct surveillance and work with big data.
 Facilitators involved; home institutions
 Dr. Vineet Saini, University of Calgary; Alberta Health Services
 Dr. Mingkai Peng, University of Calgary
 Dr. Hude Quan, University of Calgary; World Health Organization Collaborating Centre for Classification, Measurement and Standardization
 Intended output or outcome
 
 Identify AI technologies for use in risk factor surveillance; innovative methods in data collection, management, as well as assessment of data quality (i.e. selection bias); uses for new data sources in improving health equity.
 Create partnerships between national and international experts in risk factor surveillance
" @default.
- W2890986727 created "2018-09-27" @default.
- W2890986727 creator A5065133098 @default.
- W2890986727 creator A5084775348 @default.
- W2890986727 date "2018-09-07" @default.
- W2890986727 modified "2023-09-23" @default.
- W2890986727 title "Using Artificial Intelligence Technology for Social Determinants and Risk Factors Surveillance" @default.
- W2890986727 doi "https://doi.org/10.23889/ijpds.v3i4.963" @default.
- W2890986727 hasPublicationYear "2018" @default.
- W2890986727 type Work @default.
- W2890986727 sameAs 2890986727 @default.
- W2890986727 citedByCount "0" @default.
- W2890986727 crossrefType "journal-article" @default.
- W2890986727 hasAuthorship W2890986727A5065133098 @default.
- W2890986727 hasAuthorship W2890986727A5084775348 @default.
- W2890986727 hasBestOaLocation W28909867271 @default.
- W2890986727 hasConcept C138816342 @default.
- W2890986727 hasConcept C142724271 @default.
- W2890986727 hasConcept C144133560 @default.
- W2890986727 hasConcept C15744967 @default.
- W2890986727 hasConcept C2250968 @default.
- W2890986727 hasConcept C2776480101 @default.
- W2890986727 hasConcept C2778149918 @default.
- W2890986727 hasConcept C2779134260 @default.
- W2890986727 hasConcept C2908647359 @default.
- W2890986727 hasConcept C50440223 @default.
- W2890986727 hasConcept C71924100 @default.
- W2890986727 hasConcept C78491826 @default.
- W2890986727 hasConcept C99454951 @default.
- W2890986727 hasConceptScore W2890986727C138816342 @default.
- W2890986727 hasConceptScore W2890986727C142724271 @default.
- W2890986727 hasConceptScore W2890986727C144133560 @default.
- W2890986727 hasConceptScore W2890986727C15744967 @default.
- W2890986727 hasConceptScore W2890986727C2250968 @default.
- W2890986727 hasConceptScore W2890986727C2776480101 @default.
- W2890986727 hasConceptScore W2890986727C2778149918 @default.
- W2890986727 hasConceptScore W2890986727C2779134260 @default.
- W2890986727 hasConceptScore W2890986727C2908647359 @default.
- W2890986727 hasConceptScore W2890986727C50440223 @default.
- W2890986727 hasConceptScore W2890986727C71924100 @default.
- W2890986727 hasConceptScore W2890986727C78491826 @default.
- W2890986727 hasConceptScore W2890986727C99454951 @default.
- W2890986727 hasLocation W28909867271 @default.
- W2890986727 hasLocation W28909867272 @default.
- W2890986727 hasOpenAccess W2890986727 @default.
- W2890986727 hasPrimaryLocation W28909867271 @default.
- W2890986727 hasRelatedWork W1592494019 @default.
- W2890986727 hasRelatedWork W2056003838 @default.
- W2890986727 hasRelatedWork W2153488914 @default.
- W2890986727 hasRelatedWork W2281523798 @default.
- W2890986727 hasRelatedWork W2486931651 @default.
- W2890986727 hasRelatedWork W2559179018 @default.
- W2890986727 hasRelatedWork W2766660901 @default.
- W2890986727 hasRelatedWork W3025849434 @default.
- W2890986727 hasRelatedWork W3176902529 @default.
- W2890986727 hasRelatedWork W4214688894 @default.
- W2890986727 isParatext "false" @default.
- W2890986727 isRetracted "false" @default.
- W2890986727 magId "2890986727" @default.
- W2890986727 workType "article" @default.