Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890988681> ?p ?o ?g. }
- W2890988681 endingPage "1344" @default.
- W2890988681 startingPage "1332" @default.
- W2890988681 abstract "One of the key challenges of machine learning-based anomaly detection relies on the difficulty of obtaining anomaly data for training, which is usually rare, diversely distributed, and difficult to collect. To address this challenge, we formulate anomaly detection as a Positive and Unlabeled (PU) learning problem where only labeled positive (normal) data and unlabeled (normal and anomaly) data are required for learning an anomaly detector. As a semi-supervised learning method, it does not require providing labeled anomaly data for the training, thus it is easily deployed to various applications. As the unlabeled data can be extremely unbalanced, we introduce a novel PU learning method, which can tackle the situation where an unlabeled data set is mostly composed of positive instances. We start by using a linear model to extract the most reliable negative instances followed by a self-learning process to add reliable negative and positive instances with different speeds based on the estimated positive class prior. Furthermore, when feedback is available, we adopt boosting in the self-learning process to advantageously exploit the instability characteristic of PU learning. The classifiers in the self-learning process are weighted combined based on the estimated error rate to build the final classifier. Extensive experiments on six real datasets and one synthetic dataset show that our methods have better results under different conditions compared to existing methods." @default.
- W2890988681 created "2018-09-27" @default.
- W2890988681 creator A5019615508 @default.
- W2890988681 creator A5055403026 @default.
- W2890988681 creator A5074146212 @default.
- W2890988681 creator A5075444205 @default.
- W2890988681 creator A5085245110 @default.
- W2890988681 date "2019-05-01" @default.
- W2890988681 modified "2023-09-29" @default.
- W2890988681 title "Boosting Positive and Unlabeled Learning for Anomaly Detection With Multi-Features" @default.
- W2890988681 cites W1522734439 @default.
- W2890988681 cites W1978033244 @default.
- W2890988681 cites W1979504415 @default.
- W2890988681 cites W1986529956 @default.
- W2890988681 cites W1991135569 @default.
- W2890988681 cites W2022729754 @default.
- W2890988681 cites W2036840550 @default.
- W2890988681 cites W2037193886 @default.
- W2890988681 cites W2050871273 @default.
- W2890988681 cites W2064059887 @default.
- W2890988681 cites W2097089247 @default.
- W2890988681 cites W2097532544 @default.
- W2890988681 cites W2108287924 @default.
- W2890988681 cites W2110324540 @default.
- W2890988681 cites W2134510195 @default.
- W2890988681 cites W2139104465 @default.
- W2890988681 cites W2153635508 @default.
- W2890988681 cites W2170283814 @default.
- W2890988681 cites W2210641851 @default.
- W2890988681 cites W2251470557 @default.
- W2890988681 cites W2291843384 @default.
- W2890988681 cites W2318136105 @default.
- W2890988681 cites W2460849547 @default.
- W2890988681 cites W2534455806 @default.
- W2890988681 cites W2579087160 @default.
- W2890988681 cites W2592141703 @default.
- W2890988681 cites W2725249286 @default.
- W2890988681 cites W2763694500 @default.
- W2890988681 cites W2766716602 @default.
- W2890988681 doi "https://doi.org/10.1109/tmm.2018.2871421" @default.
- W2890988681 hasPublicationYear "2019" @default.
- W2890988681 type Work @default.
- W2890988681 sameAs 2890988681 @default.
- W2890988681 citedByCount "22" @default.
- W2890988681 countsByYear W28909886812019 @default.
- W2890988681 countsByYear W28909886812020 @default.
- W2890988681 countsByYear W28909886812021 @default.
- W2890988681 countsByYear W28909886812022 @default.
- W2890988681 countsByYear W28909886812023 @default.
- W2890988681 crossrefType "journal-article" @default.
- W2890988681 hasAuthorship W2890988681A5019615508 @default.
- W2890988681 hasAuthorship W2890988681A5055403026 @default.
- W2890988681 hasAuthorship W2890988681A5074146212 @default.
- W2890988681 hasAuthorship W2890988681A5075444205 @default.
- W2890988681 hasAuthorship W2890988681A5085245110 @default.
- W2890988681 hasConcept C119857082 @default.
- W2890988681 hasConcept C121332964 @default.
- W2890988681 hasConcept C12997251 @default.
- W2890988681 hasConcept C136389625 @default.
- W2890988681 hasConcept C153180895 @default.
- W2890988681 hasConcept C154945302 @default.
- W2890988681 hasConcept C165696696 @default.
- W2890988681 hasConcept C26873012 @default.
- W2890988681 hasConcept C2776145971 @default.
- W2890988681 hasConcept C38652104 @default.
- W2890988681 hasConcept C41008148 @default.
- W2890988681 hasConcept C46686674 @default.
- W2890988681 hasConcept C50644808 @default.
- W2890988681 hasConcept C58973888 @default.
- W2890988681 hasConcept C739882 @default.
- W2890988681 hasConcept C95623464 @default.
- W2890988681 hasConceptScore W2890988681C119857082 @default.
- W2890988681 hasConceptScore W2890988681C121332964 @default.
- W2890988681 hasConceptScore W2890988681C12997251 @default.
- W2890988681 hasConceptScore W2890988681C136389625 @default.
- W2890988681 hasConceptScore W2890988681C153180895 @default.
- W2890988681 hasConceptScore W2890988681C154945302 @default.
- W2890988681 hasConceptScore W2890988681C165696696 @default.
- W2890988681 hasConceptScore W2890988681C26873012 @default.
- W2890988681 hasConceptScore W2890988681C2776145971 @default.
- W2890988681 hasConceptScore W2890988681C38652104 @default.
- W2890988681 hasConceptScore W2890988681C41008148 @default.
- W2890988681 hasConceptScore W2890988681C46686674 @default.
- W2890988681 hasConceptScore W2890988681C50644808 @default.
- W2890988681 hasConceptScore W2890988681C58973888 @default.
- W2890988681 hasConceptScore W2890988681C739882 @default.
- W2890988681 hasConceptScore W2890988681C95623464 @default.
- W2890988681 hasIssue "5" @default.
- W2890988681 hasLocation W28909886811 @default.
- W2890988681 hasOpenAccess W2890988681 @default.
- W2890988681 hasPrimaryLocation W28909886811 @default.
- W2890988681 hasRelatedWork W171415620 @default.
- W2890988681 hasRelatedWork W2012844989 @default.
- W2890988681 hasRelatedWork W2041453872 @default.
- W2890988681 hasRelatedWork W2102062979 @default.
- W2890988681 hasRelatedWork W2145376937 @default.
- W2890988681 hasRelatedWork W2538661024 @default.
- W2890988681 hasRelatedWork W2890988681 @default.