Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891030779> ?p ?o ?g. }
- W2891030779 abstract "In this paper, learning of tree-structured Gaussian graphical models from distributed data is addressed. In our model, samples are stored in a set of distributed machines where each machine has access to only a subset of features. A central machine is then responsible for learning the structure based on received messages from the other nodes. We present a set of communication efficient strategies, which are theoretically proved to convey sufficient information for reliable learning of the structure. In particular, our analyses show that even if each machine sends only the signs of its local data samples to the central node, the tree structure can still be recovered with high accuracy. Our simulation results on both synthetic and real-world datasets show that our strategies achieve a desired accuracy in inferring the underlying structure, while spending a small budget on communication." @default.
- W2891030779 created "2018-09-27" @default.
- W2891030779 creator A5026979268 @default.
- W2891030779 creator A5049074026 @default.
- W2891030779 creator A5081696451 @default.
- W2891030779 date "2019-01-01" @default.
- W2891030779 modified "2023-09-23" @default.
- W2891030779 title "Learning of Tree-Structured Gaussian Graphical Models on Distributed Data Under Communication Constraints" @default.
- W2891030779 cites W1626317705 @default.
- W2891030779 cites W1965680834 @default.
- W2891030779 cites W1973612122 @default.
- W2891030779 cites W1992461476 @default.
- W2891030779 cites W1993418188 @default.
- W2891030779 cites W1998803423 @default.
- W2891030779 cites W2012575779 @default.
- W2891030779 cites W2017927472 @default.
- W2891030779 cites W2025678883 @default.
- W2891030779 cites W2027226665 @default.
- W2891030779 cites W2076513103 @default.
- W2891030779 cites W2079947444 @default.
- W2891030779 cites W2097581234 @default.
- W2891030779 cites W2105760337 @default.
- W2891030779 cites W2112905930 @default.
- W2891030779 cites W2114623190 @default.
- W2891030779 cites W2117245428 @default.
- W2891030779 cites W2124988974 @default.
- W2891030779 cites W2125631472 @default.
- W2891030779 cites W2131242330 @default.
- W2891030779 cites W2132291180 @default.
- W2891030779 cites W2132555912 @default.
- W2891030779 cites W2144785473 @default.
- W2891030779 cites W2151128232 @default.
- W2891030779 cites W2154546286 @default.
- W2891030779 cites W2162576315 @default.
- W2891030779 cites W2163166770 @default.
- W2891030779 cites W2164278908 @default.
- W2891030779 cites W2165009258 @default.
- W2891030779 cites W2166293769 @default.
- W2891030779 cites W2172272342 @default.
- W2891030779 cites W2224196924 @default.
- W2891030779 cites W225975350 @default.
- W2891030779 cites W2574314926 @default.
- W2891030779 cites W2611370172 @default.
- W2891030779 cites W2613181453 @default.
- W2891030779 cites W2963422939 @default.
- W2891030779 cites W2963473808 @default.
- W2891030779 cites W2963711523 @default.
- W2891030779 cites W2964231067 @default.
- W2891030779 cites W3098256290 @default.
- W2891030779 cites W3098834468 @default.
- W2891030779 doi "https://doi.org/10.1109/tsp.2018.2876325" @default.
- W2891030779 hasPublicationYear "2019" @default.
- W2891030779 type Work @default.
- W2891030779 sameAs 2891030779 @default.
- W2891030779 citedByCount "5" @default.
- W2891030779 countsByYear W28910307792018 @default.
- W2891030779 countsByYear W28910307792019 @default.
- W2891030779 countsByYear W28910307792020 @default.
- W2891030779 countsByYear W28910307792021 @default.
- W2891030779 crossrefType "journal-article" @default.
- W2891030779 hasAuthorship W2891030779A5026979268 @default.
- W2891030779 hasAuthorship W2891030779A5049074026 @default.
- W2891030779 hasAuthorship W2891030779A5081696451 @default.
- W2891030779 hasBestOaLocation W28910307792 @default.
- W2891030779 hasConcept C113174947 @default.
- W2891030779 hasConcept C115903097 @default.
- W2891030779 hasConcept C119857082 @default.
- W2891030779 hasConcept C121332964 @default.
- W2891030779 hasConcept C124101348 @default.
- W2891030779 hasConcept C127413603 @default.
- W2891030779 hasConcept C134306372 @default.
- W2891030779 hasConcept C154945302 @default.
- W2891030779 hasConcept C155846161 @default.
- W2891030779 hasConcept C162319229 @default.
- W2891030779 hasConcept C163716315 @default.
- W2891030779 hasConcept C163797641 @default.
- W2891030779 hasConcept C177264268 @default.
- W2891030779 hasConcept C199360897 @default.
- W2891030779 hasConcept C22367795 @default.
- W2891030779 hasConcept C33923547 @default.
- W2891030779 hasConcept C41008148 @default.
- W2891030779 hasConcept C58489278 @default.
- W2891030779 hasConcept C62520636 @default.
- W2891030779 hasConcept C62611344 @default.
- W2891030779 hasConcept C66938386 @default.
- W2891030779 hasConcept C77967617 @default.
- W2891030779 hasConcept C80444323 @default.
- W2891030779 hasConceptScore W2891030779C113174947 @default.
- W2891030779 hasConceptScore W2891030779C115903097 @default.
- W2891030779 hasConceptScore W2891030779C119857082 @default.
- W2891030779 hasConceptScore W2891030779C121332964 @default.
- W2891030779 hasConceptScore W2891030779C124101348 @default.
- W2891030779 hasConceptScore W2891030779C127413603 @default.
- W2891030779 hasConceptScore W2891030779C134306372 @default.
- W2891030779 hasConceptScore W2891030779C154945302 @default.
- W2891030779 hasConceptScore W2891030779C155846161 @default.
- W2891030779 hasConceptScore W2891030779C162319229 @default.
- W2891030779 hasConceptScore W2891030779C163716315 @default.
- W2891030779 hasConceptScore W2891030779C163797641 @default.
- W2891030779 hasConceptScore W2891030779C177264268 @default.