Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891032110> ?p ?o ?g. }
- W2891032110 abstract "The classical Kalman smoother recursively estimates states over a finite time window using all observations in the window. In this paper, we assume that the parameters characterizing the second-order statistics of process and observation noise are unknown and propose an optimal Bayesian Kalman smoother (OBKS) to obtain smoothed estimates that are optimal relative to the posterior distribution of the unknown noise parameters. The method uses a Bayesian innovation process and a posterior-based Bayesian orthogonality principle. The optimal Bayesian Kalman smoother possesses the same forward-backward structure as that of the ordinary Kalman smoother with the ordinary noise statistics replaced by their effective counterparts. In the first step, the posterior effective noise statistics are computed. Then, using the obtained effective noise statistics, the optimal Bayesian Kalman filter is run in the forward direction over the window of observations. The Bayesian smoothed estimates are obtained in the backward step. We validate the performance of the proposed robust smoother in the target tracking and gene regulatory network inference problems." @default.
- W2891032110 created "2018-09-27" @default.
- W2891032110 creator A5010097254 @default.
- W2891032110 creator A5053317035 @default.
- W2891032110 creator A5073946580 @default.
- W2891032110 date "2018-09-06" @default.
- W2891032110 modified "2023-10-12" @default.
- W2891032110 title "A Bayesian robust Kalman smoothing framework for state-space models with uncertain noise statistics" @default.
- W2891032110 cites W1561649271 @default.
- W2891032110 cites W1876120984 @default.
- W2891032110 cites W1970886386 @default.
- W2891032110 cites W1972155227 @default.
- W2891032110 cites W1980356754 @default.
- W2891032110 cites W1985495956 @default.
- W2891032110 cites W2013891788 @default.
- W2891032110 cites W2018295752 @default.
- W2891032110 cites W2049898120 @default.
- W2891032110 cites W2065736545 @default.
- W2891032110 cites W2073557215 @default.
- W2891032110 cites W2078806674 @default.
- W2891032110 cites W2080118038 @default.
- W2891032110 cites W2094227853 @default.
- W2891032110 cites W2101792624 @default.
- W2891032110 cites W2105934661 @default.
- W2891032110 cites W2110012495 @default.
- W2891032110 cites W2134330484 @default.
- W2891032110 cites W2134717973 @default.
- W2891032110 cites W2135664220 @default.
- W2891032110 cites W2137586026 @default.
- W2891032110 cites W2137813581 @default.
- W2891032110 cites W2145834063 @default.
- W2891032110 cites W2146485022 @default.
- W2891032110 cites W2151107084 @default.
- W2891032110 cites W2156064084 @default.
- W2891032110 cites W2159605934 @default.
- W2891032110 cites W2161129698 @default.
- W2891032110 cites W2204230881 @default.
- W2891032110 cites W2513723748 @default.
- W2891032110 cites W2515453889 @default.
- W2891032110 cites W2550588817 @default.
- W2891032110 cites W2582188783 @default.
- W2891032110 cites W2765295959 @default.
- W2891032110 cites W2782180943 @default.
- W2891032110 cites W2963672032 @default.
- W2891032110 cites W3196810118 @default.
- W2891032110 cites W4249925951 @default.
- W2891032110 cites W576301840 @default.
- W2891032110 doi "https://doi.org/10.1186/s13634-018-0577-1" @default.
- W2891032110 hasPublicationYear "2018" @default.
- W2891032110 type Work @default.
- W2891032110 sameAs 2891032110 @default.
- W2891032110 citedByCount "8" @default.
- W2891032110 countsByYear W28910321102018 @default.
- W2891032110 countsByYear W28910321102020 @default.
- W2891032110 countsByYear W28910321102021 @default.
- W2891032110 countsByYear W28910321102022 @default.
- W2891032110 countsByYear W28910321102023 @default.
- W2891032110 crossrefType "journal-article" @default.
- W2891032110 hasAuthorship W2891032110A5010097254 @default.
- W2891032110 hasAuthorship W2891032110A5053317035 @default.
- W2891032110 hasAuthorship W2891032110A5073946580 @default.
- W2891032110 hasBestOaLocation W28910321101 @default.
- W2891032110 hasConcept C101112237 @default.
- W2891032110 hasConcept C105795698 @default.
- W2891032110 hasConcept C107673813 @default.
- W2891032110 hasConcept C11413529 @default.
- W2891032110 hasConcept C115961682 @default.
- W2891032110 hasConcept C149782125 @default.
- W2891032110 hasConcept C154945302 @default.
- W2891032110 hasConcept C157286648 @default.
- W2891032110 hasConcept C160234255 @default.
- W2891032110 hasConcept C33923547 @default.
- W2891032110 hasConcept C3770464 @default.
- W2891032110 hasConcept C41008148 @default.
- W2891032110 hasConcept C52918065 @default.
- W2891032110 hasConcept C72434380 @default.
- W2891032110 hasConcept C99498987 @default.
- W2891032110 hasConceptScore W2891032110C101112237 @default.
- W2891032110 hasConceptScore W2891032110C105795698 @default.
- W2891032110 hasConceptScore W2891032110C107673813 @default.
- W2891032110 hasConceptScore W2891032110C11413529 @default.
- W2891032110 hasConceptScore W2891032110C115961682 @default.
- W2891032110 hasConceptScore W2891032110C149782125 @default.
- W2891032110 hasConceptScore W2891032110C154945302 @default.
- W2891032110 hasConceptScore W2891032110C157286648 @default.
- W2891032110 hasConceptScore W2891032110C160234255 @default.
- W2891032110 hasConceptScore W2891032110C33923547 @default.
- W2891032110 hasConceptScore W2891032110C3770464 @default.
- W2891032110 hasConceptScore W2891032110C41008148 @default.
- W2891032110 hasConceptScore W2891032110C52918065 @default.
- W2891032110 hasConceptScore W2891032110C72434380 @default.
- W2891032110 hasConceptScore W2891032110C99498987 @default.
- W2891032110 hasFunder F4320306076 @default.
- W2891032110 hasIssue "1" @default.
- W2891032110 hasLocation W28910321101 @default.
- W2891032110 hasLocation W28910321102 @default.
- W2891032110 hasOpenAccess W2891032110 @default.
- W2891032110 hasPrimaryLocation W28910321101 @default.
- W2891032110 hasRelatedWork W1765957141 @default.
- W2891032110 hasRelatedWork W2054807700 @default.