Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891037900> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W2891037900 abstract "Structural analysis of neurons can provide valuable insights of brain function. Semantic segmentation of neurons thus becomes an important technique in bioinformatics. Deep learning approaches have shown promising performance in various semantic segmentation problems. However, segmentation of neurons in Electron Microscopy (EM) images has some differences compared with typical segmentation tasks due to the image noise and the disturbance of the intracellular structures. In our work, we propose a network with a ResNet encoder and densely connected decoder with large kernels, and then refinement with simple morphological post-possessing. Two main advantages of our method are: 1) the network can prevent the loss of high-resolution information and enlarge the reception field; 2) the post-processing method is simple and can be directly applied to the probability map from the network to enhance the unconfident area. Evaluated on the ISBI2012 EM membrane segmentation challenge, the proposed method achieves competitive performance." @default.
- W2891037900 created "2018-09-27" @default.
- W2891037900 creator A5011971779 @default.
- W2891037900 creator A5027686620 @default.
- W2891037900 creator A5034520275 @default.
- W2891037900 creator A5038388335 @default.
- W2891037900 creator A5041567418 @default.
- W2891037900 creator A5063929828 @default.
- W2891037900 creator A5076697411 @default.
- W2891037900 creator A5081130490 @default.
- W2891037900 date "2018-10-01" @default.
- W2891037900 modified "2023-09-27" @default.
- W2891037900 title "Densely Connected Large Kernel Convolutional Network for Semantic Membrane Segmentation in Microscopy Images" @default.
- W2891037900 cites W1898703532 @default.
- W2891037900 cites W2115451053 @default.
- W2891037900 cites W2146693559 @default.
- W2891037900 cites W2167510172 @default.
- W2891037900 cites W2194775991 @default.
- W2891037900 cites W2313289912 @default.
- W2891037900 cites W2517954747 @default.
- W2891037900 cites W2569680626 @default.
- W2891037900 cites W2600617564 @default.
- W2891037900 cites W2963446712 @default.
- W2891037900 cites W2963881378 @default.
- W2891037900 cites W855255571 @default.
- W2891037900 cites W2769910914 @default.
- W2891037900 doi "https://doi.org/10.1109/icip.2018.8451775" @default.
- W2891037900 hasPublicationYear "2018" @default.
- W2891037900 type Work @default.
- W2891037900 sameAs 2891037900 @default.
- W2891037900 citedByCount "5" @default.
- W2891037900 countsByYear W28910379002019 @default.
- W2891037900 countsByYear W28910379002020 @default.
- W2891037900 crossrefType "proceedings-article" @default.
- W2891037900 hasAuthorship W2891037900A5011971779 @default.
- W2891037900 hasAuthorship W2891037900A5027686620 @default.
- W2891037900 hasAuthorship W2891037900A5034520275 @default.
- W2891037900 hasAuthorship W2891037900A5038388335 @default.
- W2891037900 hasAuthorship W2891037900A5041567418 @default.
- W2891037900 hasAuthorship W2891037900A5063929828 @default.
- W2891037900 hasAuthorship W2891037900A5076697411 @default.
- W2891037900 hasAuthorship W2891037900A5081130490 @default.
- W2891037900 hasBestOaLocation W28910379002 @default.
- W2891037900 hasConcept C108583219 @default.
- W2891037900 hasConcept C111919701 @default.
- W2891037900 hasConcept C114614502 @default.
- W2891037900 hasConcept C118505674 @default.
- W2891037900 hasConcept C124504099 @default.
- W2891037900 hasConcept C153180895 @default.
- W2891037900 hasConcept C154945302 @default.
- W2891037900 hasConcept C31972630 @default.
- W2891037900 hasConcept C33923547 @default.
- W2891037900 hasConcept C41008148 @default.
- W2891037900 hasConcept C74193536 @default.
- W2891037900 hasConcept C89600930 @default.
- W2891037900 hasConceptScore W2891037900C108583219 @default.
- W2891037900 hasConceptScore W2891037900C111919701 @default.
- W2891037900 hasConceptScore W2891037900C114614502 @default.
- W2891037900 hasConceptScore W2891037900C118505674 @default.
- W2891037900 hasConceptScore W2891037900C124504099 @default.
- W2891037900 hasConceptScore W2891037900C153180895 @default.
- W2891037900 hasConceptScore W2891037900C154945302 @default.
- W2891037900 hasConceptScore W2891037900C31972630 @default.
- W2891037900 hasConceptScore W2891037900C33923547 @default.
- W2891037900 hasConceptScore W2891037900C41008148 @default.
- W2891037900 hasConceptScore W2891037900C74193536 @default.
- W2891037900 hasConceptScore W2891037900C89600930 @default.
- W2891037900 hasLocation W28910379001 @default.
- W2891037900 hasLocation W28910379002 @default.
- W2891037900 hasOpenAccess W2891037900 @default.
- W2891037900 hasPrimaryLocation W28910379001 @default.
- W2891037900 hasRelatedWork W1976467070 @default.
- W2891037900 hasRelatedWork W2340326439 @default.
- W2891037900 hasRelatedWork W2522761331 @default.
- W2891037900 hasRelatedWork W2593403058 @default.
- W2891037900 hasRelatedWork W2755764120 @default.
- W2891037900 hasRelatedWork W2790470063 @default.
- W2891037900 hasRelatedWork W2807132203 @default.
- W2891037900 hasRelatedWork W2893045060 @default.
- W2891037900 hasRelatedWork W2899547709 @default.
- W2891037900 hasRelatedWork W2952222533 @default.
- W2891037900 hasRelatedWork W2962844785 @default.
- W2891037900 hasRelatedWork W2963321359 @default.
- W2891037900 hasRelatedWork W3009707803 @default.
- W2891037900 hasRelatedWork W3011990881 @default.
- W2891037900 hasRelatedWork W3048953762 @default.
- W2891037900 hasRelatedWork W3093569756 @default.
- W2891037900 hasRelatedWork W3103850199 @default.
- W2891037900 hasRelatedWork W3125697162 @default.
- W2891037900 hasRelatedWork W3161176090 @default.
- W2891037900 hasRelatedWork W3209272000 @default.
- W2891037900 isParatext "false" @default.
- W2891037900 isRetracted "false" @default.
- W2891037900 magId "2891037900" @default.
- W2891037900 workType "article" @default.