Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891041254> ?p ?o ?g. }
Showing items 1 to 57 of
57
with 100 items per page.
- W2891041254 abstract "The research of sequential patterns mining is very hot, and a variety of classical sequential patterns mining algorithms have emerged, and some data mining tools have been developed for free study and use. There are very few references in this new field, and the time and space cost of mining are large. This paper presents a new pruning technique. In this paper, we introduce minimum support and the k-weighted expectation pruning strategies in the weighted negative sequential patterns mining algorithm. The data set used in this paper is provided free of charge by UCI's official website, using the improved k-WNGSP mining algorithm and the existing WNGSP algorithm. Under the same condition, it is found that the number of negative sequences that can be excavated by the k-WNGSP algorithm. We can say that the number of the sequences is increased and the time consumed is shorter. Experiments show that the algorithm is effective and obtains the ideal experimental results." @default.
- W2891041254 created "2018-09-27" @default.
- W2891041254 creator A5011789645 @default.
- W2891041254 creator A5016064848 @default.
- W2891041254 creator A5062132509 @default.
- W2891041254 creator A5065722429 @default.
- W2891041254 date "2018-04-25" @default.
- W2891041254 modified "2023-09-24" @default.
- W2891041254 title "Research on Pruning Techniques of Mining Weighted Sequential Patterns" @default.
- W2891041254 cites W2152238010 @default.
- W2891041254 doi "https://doi.org/10.1145/3230348.3230460" @default.
- W2891041254 hasPublicationYear "2018" @default.
- W2891041254 type Work @default.
- W2891041254 sameAs 2891041254 @default.
- W2891041254 citedByCount "2" @default.
- W2891041254 countsByYear W28910412542019 @default.
- W2891041254 countsByYear W28910412542021 @default.
- W2891041254 crossrefType "proceedings-article" @default.
- W2891041254 hasAuthorship W2891041254A5011789645 @default.
- W2891041254 hasAuthorship W2891041254A5016064848 @default.
- W2891041254 hasAuthorship W2891041254A5062132509 @default.
- W2891041254 hasAuthorship W2891041254A5065722429 @default.
- W2891041254 hasConcept C108010975 @default.
- W2891041254 hasConcept C119857082 @default.
- W2891041254 hasConcept C124101348 @default.
- W2891041254 hasConcept C149490388 @default.
- W2891041254 hasConcept C153180895 @default.
- W2891041254 hasConcept C154945302 @default.
- W2891041254 hasConcept C41008148 @default.
- W2891041254 hasConcept C6557445 @default.
- W2891041254 hasConcept C86803240 @default.
- W2891041254 hasConceptScore W2891041254C108010975 @default.
- W2891041254 hasConceptScore W2891041254C119857082 @default.
- W2891041254 hasConceptScore W2891041254C124101348 @default.
- W2891041254 hasConceptScore W2891041254C149490388 @default.
- W2891041254 hasConceptScore W2891041254C153180895 @default.
- W2891041254 hasConceptScore W2891041254C154945302 @default.
- W2891041254 hasConceptScore W2891041254C41008148 @default.
- W2891041254 hasConceptScore W2891041254C6557445 @default.
- W2891041254 hasConceptScore W2891041254C86803240 @default.
- W2891041254 hasLocation W28910412541 @default.
- W2891041254 hasOpenAccess W2891041254 @default.
- W2891041254 hasPrimaryLocation W28910412541 @default.
- W2891041254 hasRelatedWork W1980121416 @default.
- W2891041254 hasRelatedWork W2017264939 @default.
- W2891041254 hasRelatedWork W2019113023 @default.
- W2891041254 hasRelatedWork W2138513411 @default.
- W2891041254 hasRelatedWork W2386695831 @default.
- W2891041254 hasRelatedWork W2590763102 @default.
- W2891041254 hasRelatedWork W2991444794 @default.
- W2891041254 hasRelatedWork W2999680604 @default.
- W2891041254 hasRelatedWork W3199608561 @default.
- W2891041254 hasRelatedWork W4226373478 @default.
- W2891041254 isParatext "false" @default.
- W2891041254 isRetracted "false" @default.
- W2891041254 magId "2891041254" @default.
- W2891041254 workType "article" @default.