Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891041615> ?p ?o ?g. }
- W2891041615 endingPage "4516" @default.
- W2891041615 startingPage "4505" @default.
- W2891041615 abstract "Previous studies have shown that different paclitaxel formulations produce distinct anticancer efficacy and safety profiles in animals and humans. This study aimed to investigate the distinct pharmacokinetics and tissue distribution of various nanoformulations of paclitaxel, which may translate into potential differences in safety and efficacy. Four nanoparticle formulations (nab-paclitaxel, mouse albumin nab-paclitaxel [m-nab-paclitaxel], micellar paclitaxel, and polymeric nanoparticle paclitaxel) as well as solvent-based paclitaxel were intravenously administered to mice. Seventeen blood and tissue samples were collected at different time points. The total paclitaxel concentration in each tissue specimen was measured with liquid chromatography–tandem mass spectrometry. Compared with solvent-based paclitaxel, all four nanoformulations demonstrated decreased paclitaxel exposure in plasma. All nanoformulations were associated with paclitaxel blood-cell accumulation in mice; however, m-nab-paclitaxel was associated with the lowest accumulation. Five minutes after dosing, the total paclitaxel in the tissues and blood was approximately 44% to 57% of the administered dose of all paclitaxel formulations. Paclitaxel was primarily distributed to liver, muscle, intestine, kidney, skin, and bone. Compared with solvent-based paclitaxel, the different nanocarriers altered the distribution of paclitaxel in all tissues with distinct paclitaxel concentration–time profiles. nab-paclitaxel was associated with increased delivery efficiency of paclitaxel in the pancreas compared with the other formulations, consistent with the demonstrated efficacy of nab-paclitaxel in pancreatic cancer. All the nanoformulations led to high penetration in the lungs and fat pad, which potentially points to efficacy in lung and breast cancers. Micellar paclitaxel and polymeric nanoparticle paclitaxel were associated with high paclitaxel accumulation in the heart; thus, the risk of cardiovascular toxicity with these formulations may warrant further investigation. The solvent-based formulation was associated with the poorest paclitaxel penetration in all tissues and the lowest tissue-to-plasma ratio. The different nanocarriers of paclitaxel were associated with distinct pharmacokinetics and tissue distribution, which largely align with the observed efficacy and toxicity profiles in clinical trials." @default.
- W2891041615 created "2018-09-27" @default.
- W2891041615 creator A5015790145 @default.
- W2891041615 creator A5028218508 @default.
- W2891041615 creator A5031842352 @default.
- W2891041615 creator A5037538104 @default.
- W2891041615 creator A5037793321 @default.
- W2891041615 creator A5039487331 @default.
- W2891041615 creator A5042912939 @default.
- W2891041615 creator A5046720938 @default.
- W2891041615 creator A5052490612 @default.
- W2891041615 creator A5064055416 @default.
- W2891041615 creator A5069778809 @default.
- W2891041615 creator A5089165380 @default.
- W2891041615 date "2018-09-04" @default.
- W2891041615 modified "2023-09-27" @default.
- W2891041615 title "Different Nanoformulations Alter the Tissue Distribution of Paclitaxel, Which Aligns with Reported Distinct Efficacy and Safety Profiles" @default.
- W2891041615 cites W1128029328 @default.
- W2891041615 cites W1512719441 @default.
- W2891041615 cites W1530886505 @default.
- W2891041615 cites W1550633500 @default.
- W2891041615 cites W1771666756 @default.
- W2891041615 cites W186854340 @default.
- W2891041615 cites W1963887298 @default.
- W2891041615 cites W1974023220 @default.
- W2891041615 cites W1985635833 @default.
- W2891041615 cites W1989230986 @default.
- W2891041615 cites W2005655958 @default.
- W2891041615 cites W2020678484 @default.
- W2891041615 cites W2030094610 @default.
- W2891041615 cites W2032860131 @default.
- W2891041615 cites W2035342960 @default.
- W2891041615 cites W2044647958 @default.
- W2891041615 cites W2044884111 @default.
- W2891041615 cites W2054745605 @default.
- W2891041615 cites W2060597541 @default.
- W2891041615 cites W2063478673 @default.
- W2891041615 cites W2066558863 @default.
- W2891041615 cites W2071496368 @default.
- W2891041615 cites W2078775260 @default.
- W2891041615 cites W2091796668 @default.
- W2891041615 cites W2096607288 @default.
- W2891041615 cites W2100508256 @default.
- W2891041615 cites W2102866212 @default.
- W2891041615 cites W2106926141 @default.
- W2891041615 cites W2108195288 @default.
- W2891041615 cites W2114259235 @default.
- W2891041615 cites W2117602118 @default.
- W2891041615 cites W2127410754 @default.
- W2891041615 cites W2141395077 @default.
- W2891041615 cites W2143463421 @default.
- W2891041615 cites W2144536924 @default.
- W2891041615 cites W2153017356 @default.
- W2891041615 cites W2154054522 @default.
- W2891041615 cites W2155680971 @default.
- W2891041615 cites W2163252303 @default.
- W2891041615 cites W2164067249 @default.
- W2891041615 cites W2165480504 @default.
- W2891041615 cites W2213012239 @default.
- W2891041615 cites W2316397280 @default.
- W2891041615 cites W2328394338 @default.
- W2891041615 cites W2331177167 @default.
- W2891041615 cites W2344850880 @default.
- W2891041615 cites W2414439582 @default.
- W2891041615 cites W2425706463 @default.
- W2891041615 cites W2475943497 @default.
- W2891041615 cites W2519399564 @default.
- W2891041615 cites W2552401403 @default.
- W2891041615 cites W2570533228 @default.
- W2891041615 cites W2571359091 @default.
- W2891041615 cites W2589096730 @default.
- W2891041615 cites W2594239688 @default.
- W2891041615 cites W2596237087 @default.
- W2891041615 cites W2612502936 @default.
- W2891041615 cites W2792549134 @default.
- W2891041615 cites W2981363773 @default.
- W2891041615 cites W4255762755 @default.
- W2891041615 cites W935343285 @default.
- W2891041615 doi "https://doi.org/10.1021/acs.molpharmaceut.8b00527" @default.
- W2891041615 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30180593" @default.
- W2891041615 hasPublicationYear "2018" @default.
- W2891041615 type Work @default.
- W2891041615 sameAs 2891041615 @default.
- W2891041615 citedByCount "14" @default.
- W2891041615 countsByYear W28910416152020 @default.
- W2891041615 countsByYear W28910416152021 @default.
- W2891041615 countsByYear W28910416152022 @default.
- W2891041615 countsByYear W28910416152023 @default.
- W2891041615 crossrefType "journal-article" @default.
- W2891041615 hasAuthorship W2891041615A5015790145 @default.
- W2891041615 hasAuthorship W2891041615A5028218508 @default.
- W2891041615 hasAuthorship W2891041615A5031842352 @default.
- W2891041615 hasAuthorship W2891041615A5037538104 @default.
- W2891041615 hasAuthorship W2891041615A5037793321 @default.
- W2891041615 hasAuthorship W2891041615A5039487331 @default.
- W2891041615 hasAuthorship W2891041615A5042912939 @default.
- W2891041615 hasAuthorship W2891041615A5046720938 @default.
- W2891041615 hasAuthorship W2891041615A5052490612 @default.