Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891044964> ?p ?o ?g. }
- W2891044964 endingPage "3086" @default.
- W2891044964 startingPage "3086" @default.
- W2891044964 abstract "Rapid acquisition of the spatial distribution of soil nutrients holds great implications for farmland soil productivity safety, food security and agricultural management. To this end, we collected 1297 soil samples and measured the content of soil total nitrogen (TN), soil available phosphorus (AP) and soil available potassium (AK) in Zengcheng, north of the Pearl River Delta, China. Hyperspectral remote sensing images (115 bands) of the Chinese Environmental 1A satellite were used as auxiliary variables and dimensionality reduction was performed using Pearson correlation analysis and principal component analysis. The TN, AP and AK of soil were predicted in the study area based on auxiliary variables after dimensionality reduction, along with stepwise linear regression (SLR), support vector machine (SVM), random forest (RF) and back-propagation neural network (BPNN) models; 324 independent points were used to verify the predictive performance. The BPNN model, which demonstrated the best predictive accuracy among all methods, combined ordinary kriging (OK) with mapping the spatial variations of soil nutrients. Results show that the BPNN model with double hidden layers had better predictive accuracy for soil TN (root mean square error (RMSE) = 0.409 mg kg-1, R² = 44.24%), soil AP (RMSE = 40.808 mg kg-1, R² = 42.91%) and soil AK (RMSE = 67.464 mg kg-1, R² = 48.53%) compared with the SLR, SVM and RF models. The back propagation neural network-ordinary kriging (BPNNOK) model showed the best predictive results of soil TN (RMSE = 0.292 mg kg-1, R² = 68.51%), soil AP (RMSE = 29.62 mg kg-1, R² = 69.30%) and soil AK (RMSE = 49.67 mg kg-1 and R² = 70.55%), indicating the best fitting ability between hyperspectral remote sensing bands and soil nutrients. According to the spatial mapping results of the BPNNOK model, concentrations of soil TN (north-central), soil AP (central and southwest) and soil AK (central and southeast) were respectively higher in the study area. The most important bands (464⁻517 nm) for soil TN (b10, b14, b20 and b21), soil AP (b3, b19 and b22) and soil AK (b4, b11, b12 and b25) exhibited the best response and sensitivity according to the SLR, SVM, RF and BPNN models. It was concluded that the application of hyperspectral images (visible-near-infrared data) with BPNNOK model was found to be an efficient method for mapping and monitoring soil nutrients at the regional scale." @default.
- W2891044964 created "2018-09-27" @default.
- W2891044964 creator A5016969631 @default.
- W2891044964 creator A5034995105 @default.
- W2891044964 creator A5039050415 @default.
- W2891044964 creator A5063530068 @default.
- W2891044964 creator A5070779777 @default.
- W2891044964 creator A5078258606 @default.
- W2891044964 date "2018-09-13" @default.
- W2891044964 modified "2023-10-15" @default.
- W2891044964 title "Predicting Spatial Variations in Soil Nutrients with Hyperspectral Remote Sensing at Regional Scale" @default.
- W2891044964 cites W1011169223 @default.
- W2891044964 cites W1561249009 @default.
- W2891044964 cites W1964503221 @default.
- W2891044964 cites W1964940342 @default.
- W2891044964 cites W1965619562 @default.
- W2891044964 cites W1971195668 @default.
- W2891044964 cites W1976594100 @default.
- W2891044964 cites W1977643549 @default.
- W2891044964 cites W1989700757 @default.
- W2891044964 cites W1993731464 @default.
- W2891044964 cites W1993971389 @default.
- W2891044964 cites W1994145178 @default.
- W2891044964 cites W1995504574 @default.
- W2891044964 cites W1997958522 @default.
- W2891044964 cites W2011287807 @default.
- W2891044964 cites W2020097894 @default.
- W2891044964 cites W2021409682 @default.
- W2891044964 cites W2035871099 @default.
- W2891044964 cites W2040666431 @default.
- W2891044964 cites W2052903566 @default.
- W2891044964 cites W2056114942 @default.
- W2891044964 cites W2056193610 @default.
- W2891044964 cites W2076464424 @default.
- W2891044964 cites W2087331143 @default.
- W2891044964 cites W2090517596 @default.
- W2891044964 cites W2091160252 @default.
- W2891044964 cites W2096567797 @default.
- W2891044964 cites W2097004990 @default.
- W2891044964 cites W2123386011 @default.
- W2891044964 cites W2144064225 @default.
- W2891044964 cites W2144911458 @default.
- W2891044964 cites W2153126595 @default.
- W2891044964 cites W2153635508 @default.
- W2891044964 cites W2167863236 @default.
- W2891044964 cites W2177772562 @default.
- W2891044964 cites W2193389565 @default.
- W2891044964 cites W2288960876 @default.
- W2891044964 cites W2290130166 @default.
- W2891044964 cites W2293982090 @default.
- W2891044964 cites W2313541398 @default.
- W2891044964 cites W2411263686 @default.
- W2891044964 cites W2414369363 @default.
- W2891044964 cites W2464427950 @default.
- W2891044964 cites W2583921616 @default.
- W2891044964 cites W2594368475 @default.
- W2891044964 cites W2603153182 @default.
- W2891044964 cites W2753816389 @default.
- W2891044964 cites W2756972412 @default.
- W2891044964 cites W2761454899 @default.
- W2891044964 cites W2762355583 @default.
- W2891044964 cites W2774174446 @default.
- W2891044964 cites W2883715112 @default.
- W2891044964 cites W2911964244 @default.
- W2891044964 cites W4239944110 @default.
- W2891044964 doi "https://doi.org/10.3390/s18093086" @default.
- W2891044964 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6163195" @default.
- W2891044964 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30217092" @default.
- W2891044964 hasPublicationYear "2018" @default.
- W2891044964 type Work @default.
- W2891044964 sameAs 2891044964 @default.
- W2891044964 citedByCount "41" @default.
- W2891044964 countsByYear W28910449642019 @default.
- W2891044964 countsByYear W28910449642020 @default.
- W2891044964 countsByYear W28910449642021 @default.
- W2891044964 countsByYear W28910449642022 @default.
- W2891044964 countsByYear W28910449642023 @default.
- W2891044964 crossrefType "journal-article" @default.
- W2891044964 hasAuthorship W2891044964A5016969631 @default.
- W2891044964 hasAuthorship W2891044964A5034995105 @default.
- W2891044964 hasAuthorship W2891044964A5039050415 @default.
- W2891044964 hasAuthorship W2891044964A5063530068 @default.
- W2891044964 hasAuthorship W2891044964A5070779777 @default.
- W2891044964 hasAuthorship W2891044964A5078258606 @default.
- W2891044964 hasBestOaLocation W28910449641 @default.
- W2891044964 hasConcept C105795698 @default.
- W2891044964 hasConcept C119857082 @default.
- W2891044964 hasConcept C12267149 @default.
- W2891044964 hasConcept C139945424 @default.
- W2891044964 hasConcept C159078339 @default.
- W2891044964 hasConcept C159390177 @default.
- W2891044964 hasConcept C159750122 @default.
- W2891044964 hasConcept C169258074 @default.
- W2891044964 hasConcept C170964787 @default.
- W2891044964 hasConcept C205649164 @default.
- W2891044964 hasConcept C33923547 @default.
- W2891044964 hasConcept C39432304 @default.
- W2891044964 hasConcept C41008148 @default.