Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891047851> ?p ?o ?g. }
- W2891047851 endingPage "236" @default.
- W2891047851 startingPage "228" @default.
- W2891047851 abstract "Calcification morphology can determine atherosclerotic plaque stability and is associated with increased failures rates for endovascular interventions. Computational efforts have sought to elucidate the relationship between calcification and plaque rupture in addition to predicting tissue response during aggressive revascularisation techniques. However, calcified material properties are currently estimated and may not reflect real tissue conditions. The objective of this study is to correlate calcification mechanical properties with three radiographic density groups obtained from corresponding Computed Tomography (CT) images. Seventeen human plaques extracted from carotid (n = 10) and peripheral lower limb (n = 7) arteries were examined using micro-computed tomography (µCT), simultaneously locating the calcified deposits within their internal structure and quantifying their densities. Three radiographic density groups were defined based on the sample density distribution: (A) 130–299.99 Hounsfield Units (HU), (B) 300–449.99 HU and (C) >450 HU. Nanoindentation was employed to determine the Elastic Modulus (E) and Hardness (H) values within the three density groups. Results reveal a clear distinction between mechanical properties with respect to radiographic density groups (p < 0.0005). No significant differences exist in the density-specific behaviours observed between carotid and peripheral samples. Previously defined calcification classifications indicate an association with specific radiographic density patterns. Scanning Electron Microscopy (SEM) examination revealed that density group A regions consist of both calcified and non-calcified tissues. Further research is required to define the radiographic thresholds which identify varying degrees of tissue calcification. This study demonstrates that the mechanical properties of fully mineralised atherosclerotic calcification emulate that of bone tissues (17–25 GPa), affording computational models with accurate material parameters. Global mechanical characterisation techniques disregard the heterogeneous nature of atherosclerotic lesions. Previous nanoindentation results for carotid calcifications have displayed a wide range. This study evaluates calcification properties with respect to radiographic density obtained from Micro-CT images. This is the first work to characterise calcifications from peripheral lower limb arteries using nanoindentation. Results demonstrate a strong positive correlation between radiographic density and calcification mechanical properties. Characterising calcifications using their density values provides clarity on the variation in published properties for calcified tissues. Furthermore, this study confirms the hypothesis that fully calcified plaque tissue behaviour similar to that of bone. Appropriate material parameters for calcified tissues can now be employed in computational simulations." @default.
- W2891047851 created "2018-09-27" @default.
- W2891047851 creator A5009493706 @default.
- W2891047851 creator A5036291034 @default.
- W2891047851 creator A5040261803 @default.
- W2891047851 creator A5052084173 @default.
- W2891047851 creator A5070765309 @default.
- W2891047851 creator A5079068699 @default.
- W2891047851 date "2018-10-01" @default.
- W2891047851 modified "2023-09-26" @default.
- W2891047851 title "Relating the mechanical properties of atherosclerotic calcification to radiographic density: A nanoindentation approach" @default.
- W2891047851 cites W1965328110 @default.
- W2891047851 cites W1966164421 @default.
- W2891047851 cites W1993566257 @default.
- W2891047851 cites W1996999697 @default.
- W2891047851 cites W1997726795 @default.
- W2891047851 cites W1997979955 @default.
- W2891047851 cites W1998631739 @default.
- W2891047851 cites W2011120496 @default.
- W2891047851 cites W2016256338 @default.
- W2891047851 cites W2032956278 @default.
- W2891047851 cites W2040355022 @default.
- W2891047851 cites W2043036039 @default.
- W2891047851 cites W2047937870 @default.
- W2891047851 cites W2051394874 @default.
- W2891047851 cites W2054447325 @default.
- W2891047851 cites W2066301178 @default.
- W2891047851 cites W2066646366 @default.
- W2891047851 cites W2071977423 @default.
- W2891047851 cites W2076507637 @default.
- W2891047851 cites W2079508597 @default.
- W2891047851 cites W2084324168 @default.
- W2891047851 cites W2091882739 @default.
- W2891047851 cites W2096082746 @default.
- W2891047851 cites W2104086313 @default.
- W2891047851 cites W2107504364 @default.
- W2891047851 cites W2108612273 @default.
- W2891047851 cites W2114769268 @default.
- W2891047851 cites W2116618823 @default.
- W2891047851 cites W2120041242 @default.
- W2891047851 cites W2123460034 @default.
- W2891047851 cites W2137768432 @default.
- W2891047851 cites W2140385719 @default.
- W2891047851 cites W2144138552 @default.
- W2891047851 cites W2146132963 @default.
- W2891047851 cites W2148508563 @default.
- W2891047851 cites W2150375965 @default.
- W2891047851 cites W2150698663 @default.
- W2891047851 cites W2153785016 @default.
- W2891047851 cites W2166089786 @default.
- W2891047851 cites W2167827614 @default.
- W2891047851 cites W2172684741 @default.
- W2891047851 cites W2178441327 @default.
- W2891047851 cites W2312627529 @default.
- W2891047851 cites W2554271026 @default.
- W2891047851 doi "https://doi.org/10.1016/j.actbio.2018.09.010" @default.
- W2891047851 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30218776" @default.
- W2891047851 hasPublicationYear "2018" @default.
- W2891047851 type Work @default.
- W2891047851 sameAs 2891047851 @default.
- W2891047851 citedByCount "23" @default.
- W2891047851 countsByYear W28910478512019 @default.
- W2891047851 countsByYear W28910478512020 @default.
- W2891047851 countsByYear W28910478512021 @default.
- W2891047851 countsByYear W28910478512022 @default.
- W2891047851 countsByYear W28910478512023 @default.
- W2891047851 crossrefType "journal-article" @default.
- W2891047851 hasAuthorship W2891047851A5009493706 @default.
- W2891047851 hasAuthorship W2891047851A5036291034 @default.
- W2891047851 hasAuthorship W2891047851A5040261803 @default.
- W2891047851 hasAuthorship W2891047851A5052084173 @default.
- W2891047851 hasAuthorship W2891047851A5070765309 @default.
- W2891047851 hasAuthorship W2891047851A5079068699 @default.
- W2891047851 hasConcept C126838900 @default.
- W2891047851 hasConcept C136229726 @default.
- W2891047851 hasConcept C159985019 @default.
- W2891047851 hasConcept C187954543 @default.
- W2891047851 hasConcept C192562407 @default.
- W2891047851 hasConcept C2780309369 @default.
- W2891047851 hasConcept C36454342 @default.
- W2891047851 hasConcept C49326732 @default.
- W2891047851 hasConcept C544519230 @default.
- W2891047851 hasConcept C71924100 @default.
- W2891047851 hasConceptScore W2891047851C126838900 @default.
- W2891047851 hasConceptScore W2891047851C136229726 @default.
- W2891047851 hasConceptScore W2891047851C159985019 @default.
- W2891047851 hasConceptScore W2891047851C187954543 @default.
- W2891047851 hasConceptScore W2891047851C192562407 @default.
- W2891047851 hasConceptScore W2891047851C2780309369 @default.
- W2891047851 hasConceptScore W2891047851C36454342 @default.
- W2891047851 hasConceptScore W2891047851C49326732 @default.
- W2891047851 hasConceptScore W2891047851C544519230 @default.
- W2891047851 hasConceptScore W2891047851C71924100 @default.
- W2891047851 hasFunder F4320321056 @default.
- W2891047851 hasLocation W28910478511 @default.
- W2891047851 hasLocation W28910478512 @default.
- W2891047851 hasOpenAccess W2891047851 @default.
- W2891047851 hasPrimaryLocation W28910478511 @default.