Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891065761> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W2891065761 endingPage "S154" @default.
- W2891065761 startingPage "S154" @default.
- W2891065761 abstract "Acute kidney injury (AKI) is strongly associated with adverse clinical outcomes including prolonged hospitalization, progression to CKD, and death. Diagnosis of AKI relies on detection of changes in serum creatinine (sCr) and urine output, both of which lag days behind renal injury and are unreliable at initial presentation. Here, we utilized data mining and machine learning methods to develop a predictive model for AKI with capacity for identifying ED patients at high risk for development of AKI within 7 days of their ED visit. A retrospective cross-sectional cohort of ED visits from 3 hospitals over 2 years was generated and used for model derivation and out-of-sample validation. Clinical data for all adult ED visits where initial sCr measurements were available at index visit and again within 7 days of ED departure were extracted from a relational database that underlies our electronic health record (EHR) by an experienced data user. Primary outcome for prediction was Stage 2 AKI within 7 days of ED visit, defined according to sCr-based Kidney Disease Improving Global Outcomes (KDIGO) criteria (sCr increase to ≥ 2 times baseline). Secondary outcomes included KDIGO Stage 1 AKI (sCr increase of ≥0.3 mg/dl above baseline or ≥1.5 times baseline) and Stage 3 AKI (sCr increase to ≥ 3 times baseline or to ≥ 4.0 mg/dl). Predictor variables extracted from the EHR included vital signs, laboratory results, chief complaints, demographics, past medical history, active problems, home medications and ED medication administrations. Only EHR data available prior to prediction, made at time of first metabolic panel result, was included. Predictor variables were normalized as follows: ED vital signs and laboratory results were processed to minimum and maximum values, nephrotoxic and nephroprotective medications were grouped by pharmacologic class and least absolute shrinkage and selection operator (LASSO) feature selection processing applied to chief complaints and active problems identify variables with predictive value for AKI. Multiple machine learning models (logistic regression, decision tree, linear discriminant analysis, support vector machine, and random forest) were generated and tested in the prediction of our primary outcome. All were developed using a training dataset comprised of 90% of encounters and evaluated in the remaining encounters using 10-fold cross validation. Performance of each model was assessed using binary classification measures and receiver operator curve (ROC) analyses. Our final cohort included 127,183 ED visits by 72,539 unique patients. Median age was 58 years (IQR: 43-71) and most common high-risk comorbidities were hypertension (51.8%) and heart failure (9.8%). Incidence of AKI in our cohort was as follows: Stage 1: 12.4%, Stage 2: 1.5%, Stage 3: 1.0%. Predictive model performance as measured by area under the ROC analysis ranged from 0.661 (95% CI: 0.637 - 0.685) using decision tree to 0.771 (95% CI: 0.759 - 0.783) using random forest. Machine learning methods applied to EHR data identified ED patients at high risk for AKI well before patients met diagnostic criteria. The model developed here, when paired with nephroprotective point-of-care clinical decision support, has potential to improve outcomes for this patient population." @default.
- W2891065761 created "2018-09-27" @default.
- W2891065761 creator A5004814527 @default.
- W2891065761 creator A5043237099 @default.
- W2891065761 creator A5052089050 @default.
- W2891065761 creator A5058153271 @default.
- W2891065761 date "2018-10-01" @default.
- W2891065761 modified "2023-10-18" @default.
- W2891065761 title "1EMF Prediction of Acute Kidney Injury in the Emergency Department Using Electronic Health Record Data and Machine Learning Methods" @default.
- W2891065761 doi "https://doi.org/10.1016/j.annemergmed.2018.08.398" @default.
- W2891065761 hasPublicationYear "2018" @default.
- W2891065761 type Work @default.
- W2891065761 sameAs 2891065761 @default.
- W2891065761 citedByCount "1" @default.
- W2891065761 countsByYear W28910657612019 @default.
- W2891065761 crossrefType "journal-article" @default.
- W2891065761 hasAuthorship W2891065761A5004814527 @default.
- W2891065761 hasAuthorship W2891065761A5043237099 @default.
- W2891065761 hasAuthorship W2891065761A5052089050 @default.
- W2891065761 hasAuthorship W2891065761A5058153271 @default.
- W2891065761 hasBestOaLocation W28910657611 @default.
- W2891065761 hasConcept C111368507 @default.
- W2891065761 hasConcept C118552586 @default.
- W2891065761 hasConcept C126322002 @default.
- W2891065761 hasConcept C12725497 @default.
- W2891065761 hasConcept C127313418 @default.
- W2891065761 hasConcept C141071460 @default.
- W2891065761 hasConcept C146357865 @default.
- W2891065761 hasConcept C151730666 @default.
- W2891065761 hasConcept C160735492 @default.
- W2891065761 hasConcept C162324750 @default.
- W2891065761 hasConcept C167135981 @default.
- W2891065761 hasConcept C177713679 @default.
- W2891065761 hasConcept C194828623 @default.
- W2891065761 hasConcept C195910791 @default.
- W2891065761 hasConcept C2776890885 @default.
- W2891065761 hasConcept C2778653478 @default.
- W2891065761 hasConcept C2780306776 @default.
- W2891065761 hasConcept C2780472472 @default.
- W2891065761 hasConcept C2780724011 @default.
- W2891065761 hasConcept C3020144179 @default.
- W2891065761 hasConcept C50522688 @default.
- W2891065761 hasConcept C71924100 @default.
- W2891065761 hasConcept C72563966 @default.
- W2891065761 hasConcept C86803240 @default.
- W2891065761 hasConceptScore W2891065761C111368507 @default.
- W2891065761 hasConceptScore W2891065761C118552586 @default.
- W2891065761 hasConceptScore W2891065761C126322002 @default.
- W2891065761 hasConceptScore W2891065761C12725497 @default.
- W2891065761 hasConceptScore W2891065761C127313418 @default.
- W2891065761 hasConceptScore W2891065761C141071460 @default.
- W2891065761 hasConceptScore W2891065761C146357865 @default.
- W2891065761 hasConceptScore W2891065761C151730666 @default.
- W2891065761 hasConceptScore W2891065761C160735492 @default.
- W2891065761 hasConceptScore W2891065761C162324750 @default.
- W2891065761 hasConceptScore W2891065761C167135981 @default.
- W2891065761 hasConceptScore W2891065761C177713679 @default.
- W2891065761 hasConceptScore W2891065761C194828623 @default.
- W2891065761 hasConceptScore W2891065761C195910791 @default.
- W2891065761 hasConceptScore W2891065761C2776890885 @default.
- W2891065761 hasConceptScore W2891065761C2778653478 @default.
- W2891065761 hasConceptScore W2891065761C2780306776 @default.
- W2891065761 hasConceptScore W2891065761C2780472472 @default.
- W2891065761 hasConceptScore W2891065761C2780724011 @default.
- W2891065761 hasConceptScore W2891065761C3020144179 @default.
- W2891065761 hasConceptScore W2891065761C50522688 @default.
- W2891065761 hasConceptScore W2891065761C71924100 @default.
- W2891065761 hasConceptScore W2891065761C72563966 @default.
- W2891065761 hasConceptScore W2891065761C86803240 @default.
- W2891065761 hasIssue "4" @default.
- W2891065761 hasLocation W28910657611 @default.
- W2891065761 hasOpenAccess W2891065761 @default.
- W2891065761 hasPrimaryLocation W28910657611 @default.
- W2891065761 hasRelatedWork W1174523014 @default.
- W2891065761 hasRelatedWork W2032013985 @default.
- W2891065761 hasRelatedWork W2080356904 @default.
- W2891065761 hasRelatedWork W2587730730 @default.
- W2891065761 hasRelatedWork W2777779340 @default.
- W2891065761 hasRelatedWork W2943726412 @default.
- W2891065761 hasRelatedWork W2974208464 @default.
- W2891065761 hasRelatedWork W3133977922 @default.
- W2891065761 hasRelatedWork W3172519280 @default.
- W2891065761 hasRelatedWork W3210104673 @default.
- W2891065761 hasVolume "72" @default.
- W2891065761 isParatext "false" @default.
- W2891065761 isRetracted "false" @default.
- W2891065761 magId "2891065761" @default.
- W2891065761 workType "article" @default.