Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891072262> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W2891072262 abstract "In this paper, we present a factored network-based acoustic modeling framework with various deep convolutional recurrent neural network (RNN) architectures for noise-robust automatic speech recognition (ASR). As the factored network-based acoustic model, we have already proposed a deep convolutional neural network (CNN)-based framework. Deep CNNs can emphasize the spatial locality of input speech features, but have no ability to analyze the properties of long-term speech feature sequences. Therefore, we introduce various deep convolutional RNN architectures that achieve both spatial locality and long-term analysis into our proposed factored network-based acoustic modeling framework. Through various comparative evaluations, we reveal that the proposed method successfully improves the accuracy of ASR in noisy environments." @default.
- W2891072262 created "2018-09-27" @default.
- W2891072262 creator A5069927701 @default.
- W2891072262 creator A5074161622 @default.
- W2891072262 date "2018-04-01" @default.
- W2891072262 modified "2023-09-25" @default.
- W2891072262 title "Comparative Evaluations of Various Factored Deep Convolutional Rnn Architectures for Noise Robust Speech Recognition" @default.
- W2891072262 doi "https://doi.org/10.1109/icassp.2018.8462596" @default.
- W2891072262 hasPublicationYear "2018" @default.
- W2891072262 type Work @default.
- W2891072262 sameAs 2891072262 @default.
- W2891072262 citedByCount "5" @default.
- W2891072262 countsByYear W28910722622019 @default.
- W2891072262 countsByYear W28910722622020 @default.
- W2891072262 countsByYear W28910722622021 @default.
- W2891072262 crossrefType "proceedings-article" @default.
- W2891072262 hasAuthorship W2891072262A5069927701 @default.
- W2891072262 hasAuthorship W2891072262A5074161622 @default.
- W2891072262 hasConcept C108583219 @default.
- W2891072262 hasConcept C115961682 @default.
- W2891072262 hasConcept C138885662 @default.
- W2891072262 hasConcept C147168706 @default.
- W2891072262 hasConcept C153180895 @default.
- W2891072262 hasConcept C154945302 @default.
- W2891072262 hasConcept C163294075 @default.
- W2891072262 hasConcept C2776182073 @default.
- W2891072262 hasConcept C2776401178 @default.
- W2891072262 hasConcept C2779808786 @default.
- W2891072262 hasConcept C28490314 @default.
- W2891072262 hasConcept C41008148 @default.
- W2891072262 hasConcept C41895202 @default.
- W2891072262 hasConcept C50644808 @default.
- W2891072262 hasConcept C81363708 @default.
- W2891072262 hasConcept C99498987 @default.
- W2891072262 hasConceptScore W2891072262C108583219 @default.
- W2891072262 hasConceptScore W2891072262C115961682 @default.
- W2891072262 hasConceptScore W2891072262C138885662 @default.
- W2891072262 hasConceptScore W2891072262C147168706 @default.
- W2891072262 hasConceptScore W2891072262C153180895 @default.
- W2891072262 hasConceptScore W2891072262C154945302 @default.
- W2891072262 hasConceptScore W2891072262C163294075 @default.
- W2891072262 hasConceptScore W2891072262C2776182073 @default.
- W2891072262 hasConceptScore W2891072262C2776401178 @default.
- W2891072262 hasConceptScore W2891072262C2779808786 @default.
- W2891072262 hasConceptScore W2891072262C28490314 @default.
- W2891072262 hasConceptScore W2891072262C41008148 @default.
- W2891072262 hasConceptScore W2891072262C41895202 @default.
- W2891072262 hasConceptScore W2891072262C50644808 @default.
- W2891072262 hasConceptScore W2891072262C81363708 @default.
- W2891072262 hasConceptScore W2891072262C99498987 @default.
- W2891072262 hasLocation W28910722621 @default.
- W2891072262 hasOpenAccess W2891072262 @default.
- W2891072262 hasPrimaryLocation W28910722621 @default.
- W2891072262 hasRelatedWork W1554982972 @default.
- W2891072262 hasRelatedWork W1555696814 @default.
- W2891072262 hasRelatedWork W1569189596 @default.
- W2891072262 hasRelatedWork W1995562189 @default.
- W2891072262 hasRelatedWork W2155273149 @default.
- W2891072262 hasRelatedWork W2515753980 @default.
- W2891072262 hasRelatedWork W2516608830 @default.
- W2891072262 hasRelatedWork W2530876040 @default.
- W2891072262 hasRelatedWork W2587717635 @default.
- W2891072262 hasRelatedWork W2738313295 @default.
- W2891072262 hasRelatedWork W2801504028 @default.
- W2891072262 hasRelatedWork W2804644188 @default.
- W2891072262 hasRelatedWork W2902293851 @default.
- W2891072262 hasRelatedWork W2940064443 @default.
- W2891072262 hasRelatedWork W2962843322 @default.
- W2891072262 hasRelatedWork W2999733888 @default.
- W2891072262 hasRelatedWork W3023156001 @default.
- W2891072262 hasRelatedWork W3117290926 @default.
- W2891072262 hasRelatedWork W3161932608 @default.
- W2891072262 hasRelatedWork W3174261647 @default.
- W2891072262 isParatext "false" @default.
- W2891072262 isRetracted "false" @default.
- W2891072262 magId "2891072262" @default.
- W2891072262 workType "article" @default.