Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891073894> ?p ?o ?g. }
- W2891073894 abstract "Local realistic models cannot completely describe all predictions of quantum mechanics. This is known as Bell's theorem that can be revealed either by violations of Bell inequality, or all-versus-nothing proof of nonlocality. Hardy's paradox is an important all-versus-nothing proof and is considered as ``the simplest form of Bell's theorem.'' In this work, we advance the study of Hardy's paradox based on Bell's inequality. Our formalism is essentially equivalent to the ``logical Bell inequality'' formalism developed by Abramsky and Hardy, but ours is more easily applied to experimental tests. Remarkably, we find that not only for a two-qubit two-setting case but also for a two-qubit four-setting case, we can construct stronger Hardy-type paradoxes based on Bell's inequality, whose successful probabilities can attain four times and seven times larger than the original one, respectively, thus providing more friendly tests for experiment. Meanwhile, we experimentally test the stronger Hardy-type paradoxes in a two-qubit system. Within the experimental errors, the experimental results coincide with the theoretical predictions." @default.
- W2891073894 created "2018-09-27" @default.
- W2891073894 creator A5000897156 @default.
- W2891073894 creator A5001089133 @default.
- W2891073894 creator A5021341955 @default.
- W2891073894 creator A5027891188 @default.
- W2891073894 creator A5028392578 @default.
- W2891073894 creator A5049842883 @default.
- W2891073894 creator A5056840391 @default.
- W2891073894 creator A5061449961 @default.
- W2891073894 creator A5062909050 @default.
- W2891073894 creator A5081441543 @default.
- W2891073894 date "2019-03-05" @default.
- W2891073894 modified "2023-10-14" @default.
- W2891073894 title "Stronger Hardy-type paradox based on the Bell inequality and its experimental test" @default.
- W2891073894 cites W1481770622 @default.
- W2891073894 cites W1633487291 @default.
- W2891073894 cites W1709784975 @default.
- W2891073894 cites W1971909328 @default.
- W2891073894 cites W1982830384 @default.
- W2891073894 cites W1986407511 @default.
- W2891073894 cites W1997651244 @default.
- W2891073894 cites W1999926914 @default.
- W2891073894 cites W2027911682 @default.
- W2891073894 cites W2028394874 @default.
- W2891073894 cites W2028699181 @default.
- W2891073894 cites W2028815089 @default.
- W2891073894 cites W2032718996 @default.
- W2891073894 cites W2039004790 @default.
- W2891073894 cites W2053738022 @default.
- W2891073894 cites W2057414071 @default.
- W2891073894 cites W2065260707 @default.
- W2891073894 cites W2075063878 @default.
- W2891073894 cites W2078963718 @default.
- W2891073894 cites W2093708734 @default.
- W2891073894 cites W2129699198 @default.
- W2891073894 cites W2135830616 @default.
- W2891073894 cites W2156125258 @default.
- W2891073894 cites W2160819312 @default.
- W2891073894 cites W2162493800 @default.
- W2891073894 cites W2174298480 @default.
- W2891073894 cites W2322000433 @default.
- W2891073894 cites W2762179548 @default.
- W2891073894 cites W2783544230 @default.
- W2891073894 cites W3037737784 @default.
- W2891073894 cites W3100617139 @default.
- W2891073894 cites W3105527140 @default.
- W2891073894 cites W4211058570 @default.
- W2891073894 cites W652745200 @default.
- W2891073894 doi "https://doi.org/10.1103/physreva.99.032103" @default.
- W2891073894 hasPublicationYear "2019" @default.
- W2891073894 type Work @default.
- W2891073894 sameAs 2891073894 @default.
- W2891073894 citedByCount "13" @default.
- W2891073894 countsByYear W28910738942020 @default.
- W2891073894 countsByYear W28910738942021 @default.
- W2891073894 countsByYear W28910738942022 @default.
- W2891073894 countsByYear W28910738942023 @default.
- W2891073894 crossrefType "journal-article" @default.
- W2891073894 hasAuthorship W2891073894A5000897156 @default.
- W2891073894 hasAuthorship W2891073894A5001089133 @default.
- W2891073894 hasAuthorship W2891073894A5021341955 @default.
- W2891073894 hasAuthorship W2891073894A5027891188 @default.
- W2891073894 hasAuthorship W2891073894A5028392578 @default.
- W2891073894 hasAuthorship W2891073894A5049842883 @default.
- W2891073894 hasAuthorship W2891073894A5056840391 @default.
- W2891073894 hasAuthorship W2891073894A5061449961 @default.
- W2891073894 hasAuthorship W2891073894A5062909050 @default.
- W2891073894 hasAuthorship W2891073894A5081441543 @default.
- W2891073894 hasBestOaLocation W28910738942 @default.
- W2891073894 hasConcept C111472728 @default.
- W2891073894 hasConcept C11511207 @default.
- W2891073894 hasConcept C118704821 @default.
- W2891073894 hasConcept C121040770 @default.
- W2891073894 hasConcept C121332964 @default.
- W2891073894 hasConcept C128108043 @default.
- W2891073894 hasConcept C134265032 @default.
- W2891073894 hasConcept C136815107 @default.
- W2891073894 hasConcept C138622882 @default.
- W2891073894 hasConcept C138885662 @default.
- W2891073894 hasConcept C142362112 @default.
- W2891073894 hasConcept C153349607 @default.
- W2891073894 hasConcept C193588502 @default.
- W2891073894 hasConcept C202444582 @default.
- W2891073894 hasConcept C203087015 @default.
- W2891073894 hasConcept C33332235 @default.
- W2891073894 hasConcept C33923547 @default.
- W2891073894 hasConcept C36494176 @default.
- W2891073894 hasConcept C558565934 @default.
- W2891073894 hasConcept C62520636 @default.
- W2891073894 hasConcept C73301696 @default.
- W2891073894 hasConcept C84114770 @default.
- W2891073894 hasConceptScore W2891073894C111472728 @default.
- W2891073894 hasConceptScore W2891073894C11511207 @default.
- W2891073894 hasConceptScore W2891073894C118704821 @default.
- W2891073894 hasConceptScore W2891073894C121040770 @default.
- W2891073894 hasConceptScore W2891073894C121332964 @default.
- W2891073894 hasConceptScore W2891073894C128108043 @default.
- W2891073894 hasConceptScore W2891073894C134265032 @default.
- W2891073894 hasConceptScore W2891073894C136815107 @default.