Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891076821> ?p ?o ?g. }
- W2891076821 endingPage "36" @default.
- W2891076821 startingPage "1" @default.
- W2891076821 abstract "The additive white Gaussian noise (AWGN) Additive White Gaussian Noise (AWGN) model is ubiquitous in signal processing. This model is often justified by central-limit theorem (CLT) Central-Limit Theorem (CLT) arguments. However, whereas the CLT may support a Gaussian distribution for the random errors, it does not provide any justification for the assumed additivity and whiteness. As a matter of fact, data acquired in real applications can seldom be described with good approximation by the AWGN model, especially because errors are typically correlated and not additive. Failure to model accurately the noise leads to inaccurate analysis, ineffective filtering, and distortion or even failure in the estimation. This chapter provides an introduction to both signal-dependent and correlated noiseCorrelated noise and to the relevant models and basic methods for the analysis and estimation of these types of noise. Generic one-parameter families of distributions are used as the essential mathematical setting for the observed signals. The distribution families covered as leading examples include Poisson, mixed Poisson–Gaussian, various forms of signal-dependent Gaussian noiseGaussian noise (including multiplicative families and approximations of the Poisson family), as well as doubly censoredCensored distribution heteroskedastic Gaussian distributions. We also consider various forms of noise correlation, encompassing pixel andReadout noise readout cross-talkCross-talk, fixed-pattern noiseFixed-pattern noise, column/row noiseColumn noise, etc. Row noise , as well as related issues like photo-response and gain nonuniformity. The introduced models and methods are applicable to several important imaging scenarios and technologies, such as raw dataRaw data from digital camera sensors, various types of radiation imaging relevant to security and to biomedical imaging." @default.
- W2891076821 created "2018-09-27" @default.
- W2891076821 creator A5008532925 @default.
- W2891076821 creator A5049857806 @default.
- W2891076821 creator A5063956725 @default.
- W2891076821 date "2018-01-01" @default.
- W2891076821 modified "2023-09-26" @default.
- W2891076821 title "Modeling and Estimation of Signal-Dependent and Correlated Noise" @default.
- W2891076821 cites W1989077663 @default.
- W2891076821 cites W1997585878 @default.
- W2891076821 cites W2018612061 @default.
- W2891076821 cites W2025257408 @default.
- W2891076821 cites W2036524212 @default.
- W2891076821 cites W2038462420 @default.
- W2891076821 cites W2043220014 @default.
- W2891076821 cites W2052315635 @default.
- W2891076821 cites W2062515778 @default.
- W2891076821 cites W2090888886 @default.
- W2891076821 cites W2115706991 @default.
- W2891076821 cites W2136035751 @default.
- W2891076821 cites W2137969878 @default.
- W2891076821 cites W2151114449 @default.
- W2891076821 cites W2160715448 @default.
- W2891076821 cites W2164488798 @default.
- W2891076821 cites W2172656675 @default.
- W2891076821 cites W2421886322 @default.
- W2891076821 cites W2626513272 @default.
- W2891076821 cites W2683937515 @default.
- W2891076821 cites W2792661713 @default.
- W2891076821 cites W2798681570 @default.
- W2891076821 cites W4232814400 @default.
- W2891076821 cites W4233323564 @default.
- W2891076821 cites W42473135 @default.
- W2891076821 cites W4298214729 @default.
- W2891076821 doi "https://doi.org/10.1007/978-3-319-96029-6_1" @default.
- W2891076821 hasPublicationYear "2018" @default.
- W2891076821 type Work @default.
- W2891076821 sameAs 2891076821 @default.
- W2891076821 citedByCount "7" @default.
- W2891076821 countsByYear W28910768212019 @default.
- W2891076821 countsByYear W28910768212020 @default.
- W2891076821 countsByYear W28910768212022 @default.
- W2891076821 countsByYear W28910768212023 @default.
- W2891076821 crossrefType "book-chapter" @default.
- W2891076821 hasAuthorship W2891076821A5008532925 @default.
- W2891076821 hasAuthorship W2891076821A5049857806 @default.
- W2891076821 hasAuthorship W2891076821A5063956725 @default.
- W2891076821 hasConcept C100906024 @default.
- W2891076821 hasConcept C105795698 @default.
- W2891076821 hasConcept C112633086 @default.
- W2891076821 hasConcept C11413529 @default.
- W2891076821 hasConcept C115961682 @default.
- W2891076821 hasConcept C121332964 @default.
- W2891076821 hasConcept C131021393 @default.
- W2891076821 hasConcept C13412647 @default.
- W2891076821 hasConcept C154945302 @default.
- W2891076821 hasConcept C163294075 @default.
- W2891076821 hasConcept C163716315 @default.
- W2891076821 hasConcept C166785042 @default.
- W2891076821 hasConcept C169334058 @default.
- W2891076821 hasConcept C18015164 @default.
- W2891076821 hasConcept C182163834 @default.
- W2891076821 hasConcept C187612029 @default.
- W2891076821 hasConcept C200378446 @default.
- W2891076821 hasConcept C28826006 @default.
- W2891076821 hasConcept C29265498 @default.
- W2891076821 hasConcept C33923547 @default.
- W2891076821 hasConcept C41008148 @default.
- W2891076821 hasConcept C4199805 @default.
- W2891076821 hasConcept C62520636 @default.
- W2891076821 hasConcept C72659945 @default.
- W2891076821 hasConcept C761482 @default.
- W2891076821 hasConcept C76155785 @default.
- W2891076821 hasConcept C94915269 @default.
- W2891076821 hasConcept C99498987 @default.
- W2891076821 hasConceptScore W2891076821C100906024 @default.
- W2891076821 hasConceptScore W2891076821C105795698 @default.
- W2891076821 hasConceptScore W2891076821C112633086 @default.
- W2891076821 hasConceptScore W2891076821C11413529 @default.
- W2891076821 hasConceptScore W2891076821C115961682 @default.
- W2891076821 hasConceptScore W2891076821C121332964 @default.
- W2891076821 hasConceptScore W2891076821C131021393 @default.
- W2891076821 hasConceptScore W2891076821C13412647 @default.
- W2891076821 hasConceptScore W2891076821C154945302 @default.
- W2891076821 hasConceptScore W2891076821C163294075 @default.
- W2891076821 hasConceptScore W2891076821C163716315 @default.
- W2891076821 hasConceptScore W2891076821C166785042 @default.
- W2891076821 hasConceptScore W2891076821C169334058 @default.
- W2891076821 hasConceptScore W2891076821C18015164 @default.
- W2891076821 hasConceptScore W2891076821C182163834 @default.
- W2891076821 hasConceptScore W2891076821C187612029 @default.
- W2891076821 hasConceptScore W2891076821C200378446 @default.
- W2891076821 hasConceptScore W2891076821C28826006 @default.
- W2891076821 hasConceptScore W2891076821C29265498 @default.
- W2891076821 hasConceptScore W2891076821C33923547 @default.
- W2891076821 hasConceptScore W2891076821C41008148 @default.
- W2891076821 hasConceptScore W2891076821C4199805 @default.
- W2891076821 hasConceptScore W2891076821C62520636 @default.